Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4930043
1.
1.S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35(3), 209217 (2006).
http://dx.doi.org/10.1039/B514191E
2.
2.N. J. Halas, Nano Lett. 10(10), 38163822 (2010).
http://dx.doi.org/10.1021/nl1032342
3.
3.V. Giannini, A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, Chem. Rev. 111(6), 38883912 (2011).
http://dx.doi.org/10.1021/cr1002672
4.
4.G. V. Hartland, Chem. Rev. 111(6), 38583887 (2011).
http://dx.doi.org/10.1021/cr1002547
5.
5.K. F. Wu, W. E. Rodriguez-Cordoba, Y. Yang, and T. Q. Lian, Nano Lett. 13(11), 52555263 (2013).
http://dx.doi.org/10.1021/nl402730m
6.
6.J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Nat. Mater. 10(5), 361366 (2011).
http://dx.doi.org/10.1038/nmat3004
7.
7.F. Scotognella, G. D. Valle, A. R. S. Kandada, D. Dorfs, Z. Mavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobcheyskaya, G. Lanzani, L. Manna, and F. Tassone, Nano Lett. 11(11), 47114717 (2011).
http://dx.doi.org/10.1021/nl202390s
8.
8.Y. Zhao and C. Burda, Energy Environ. Sci. 5(2), 55645576 (2012).
http://dx.doi.org/10.1039/c1ee02734d
9.
9.W. Li, R. Zamani, P. R. Gil, B. Pelaz, M. Ibanez, D. Cadavid, A. Shavel, R. A. Alvarez-Puebla, W. J. Parak, J. Arbiol, and A. Cabot, J. Am. Chem. Soc. 135(19), 70987101 (2013).
http://dx.doi.org/10.1021/ja401428e
10.
10.X. Liu, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, Adv. Funct. Mater. 23(10), 12561264 (2013).
http://dx.doi.org/10.1002/adfm.201202061
11.
11.M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, J. Am. Chem. Soc. 131(49), 1773617737 (2009).
http://dx.doi.org/10.1021/ja9064415
12.
12.K. Manthiram and A. P. Alivisatos, J. Am. Chem. Soc. 134(9), 39953998 (2012).
http://dx.doi.org/10.1021/ja211363w
13.
13.K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, J. Am. Chem. Soc. 130(5), 16761680 (2008).
http://dx.doi.org/10.1021/ja076503n
14.
14.I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, J. Catal. 220(1), 127135 (2003).
http://dx.doi.org/10.1016/S0021-9517(03)00241-0
15.
15.P. D. Cozzoli, M. L. Curri, and A. Agostiano, Chem. Commun. 2005(25), 31863188.
http://dx.doi.org/10.1039/b503774c
16.
16.C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, and H. Tamiaki, Thin Solid Films 516(17), 58815884 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.050
17.
17.H. Tada, T. Kiyonaga, and S.-i. Naya, Chem. Soc. Rev. 38(7), 18491858 (2009).
http://dx.doi.org/10.1039/b822385h
18.
18.C. Yogi, K. Kojima, T. Takai, and N. Wada, J. Mater. Sci. 44(3), 821827 (2009).
http://dx.doi.org/10.1007/s10853-008-3151-7
19.
19.X. Wang and R. A. Caruso, J. Mater. Chem. 21(1), 2028 (2011).
http://dx.doi.org/10.1039/C0JM02620D
20.
20.J. Jiang, H. Li, and L. Zhang, Chemistry 18(20), 63606369 (2012).
http://dx.doi.org/10.1002/chem.201102606
21.
21.W. Hou and S. B. Cronin, Adv. Funct. Mater. 23(13), 16121619 (2013).
http://dx.doi.org/10.1002/adfm.201202148
22.
22.S. Li, J. Zhang, M. G. Kibria, Z. Mi, M. Chaker, D. Ma, R. Nechache, and F. Rosei, Chem. Commun. 49(52), 58565858 (2013).
http://dx.doi.org/10.1039/c3cc40363g
23.
23.C. Liu, D. Yang, Y. Jiao, Y. Tian, Y. Wang, and Z. Jiang, ACS Appl. Mater. Interfaces 5(9), 38243832 (2013).
http://dx.doi.org/10.1021/am4004733
24.
24.D. A. Panayotov, P. A. DeSario, J. J. Pietron, T. H. Brintlinger, L. C. Szymczak, D. R. Rolison, and J. R. Morris, J. Phys. Chem. C 117(29), 1503515049 (2013).
http://dx.doi.org/10.1021/jp312583w
25.
25.J. B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, and A. Bruckner, Angew. Chem., Int. Ed. 52(43), 11420 (2013).
http://dx.doi.org/10.1002/anie.201306504
26.
26.J. Wang, S. Pan, M. Chen, and D. A. Dixon, J. Phys. Chem. C 117(42), 2206022068 (2013).
http://dx.doi.org/10.1021/jp406733k
27.
27.C. Yu, G. Li, S. Kumar, H. Kawasaki, and R. Jin, J. Phys. Chem. Lett. 4(17), 28472852 (2013).
http://dx.doi.org/10.1021/jz401447w
28.
28.M. Miljevic, B. Geiseler, T. Bergfeldt, P. Bockstaller, and L. Fruk, Adv. Funct. Mater. 24(7), 907915 (2014).
http://dx.doi.org/10.1002/adfm.201301484
29.
29.W. Tu, Y. Zhou, and Z. Zou, Adv. Mater. 26(27), 46074626 (2014).
http://dx.doi.org/10.1002/adma.201400087
30.
30.S. Ananthakumar, J. Ramkumar, and S. M. Babu, Sol. Energy 106, 136142 (2014).
http://dx.doi.org/10.1016/j.solener.2014.01.044
31.
31.S. In, A. Orlov, F. Garcia, M. Tikhov, D. S. Wright, and R. M. Lambert, Chem. Commun. 2006(40), 42364238.
http://dx.doi.org/10.1039/b610316b
32.
32.Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, Adv. Mater. 24(17), 23102314 (2012).
http://dx.doi.org/10.1002/adma.201104241
33.
33.G. Wang, X. Wang, J. Liu, and X. Sun, Chemistry 18(17), 53615366 (2012).
http://dx.doi.org/10.1002/chem.201101410
34.
34.K. Lee, R. Hahn, M. Altomare, E. Selli, and P. Schmuki, Adv. Mater. 25(42), 613361337 (2013).
http://dx.doi.org/10.1002/adma.201302581
35.
35.J. Lu, P. Zhang, A. Li, F. Su, T. Wang, Y. Liu, and J. Gong, Chem. Commun. 49(52), 58175819 (2013).
http://dx.doi.org/10.1039/c3cc42029a
36.
36.A. Tanaka, Y. Nishino, S. Sakaguchi, T. Yoshikawa, K. Imamura, K. Hashimoto, and H. Kominami, Chem. Commun. 49(25), 25512553 (2013).
http://dx.doi.org/10.1039/c3cc39096a
37.
37.Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, Nano Lett. 13(1), 1420 (2013).
http://dx.doi.org/10.1021/nl3029202
38.
38.Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, and Z. Zou, J. Am. Chem. Soc. 132(41), 1438514387 (2010).
http://dx.doi.org/10.1021/ja1068596
39.
39.W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, and Z. Zou, Adv. Funct. Mater. 22(6), 12151221 (2012).
http://dx.doi.org/10.1002/adfm.201102566
40.
40.S. C. Yan, J. J. Wang, H. L. Gao, N. Y. Wang, H. Yu, Z. S. Li, Y. Zhou, and Z. G. Zou, Adv. Funct. Mater. 23(14), 18391845 (2013).
http://dx.doi.org/10.1002/adfm.201202484
41.
41.W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang, and J. Jiang, J. Phys. Chem. B 109(29), 1401114016 (2005).
http://dx.doi.org/10.1021/jp0517605
42.
42.Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, and Z. Y. Chen, Chem. Mater. 11, 545 (1999).
http://dx.doi.org/10.1021/cm981122h
43.
43.X. Chen, Y. Zhou, Q. Liu, W. Tu, and Z. Zou, CrystEngComm 14(22), 7583 (2012).
http://dx.doi.org/10.1039/c2ce25162k
44.
44.A. A. Aziz, C. K. Cheng, S. Ibrahim, M. Matheswaran, and P. Saravanan, Chem. Eng. J. 183, 349356 (2012).
http://dx.doi.org/10.1016/j.cej.2012.01.006
45.
45.Q. Xiang, J. Yu, B. Cheng, and H. C. Ong, Asian J. Chem. 5(6), 14661474 (2010).
http://dx.doi.org/10.1002/asia.200900695
46.
46.Y. Zhou, R. Z. Ma, Y. Ebina, K. Takada, and T. Sasaki, Chem. Mater. 18(5), 12351239 (2006).
http://dx.doi.org/10.1021/cm052284y
47.
47.E. Z. Liu, Y. Hu, H. Li, C. N. Tang, X. Y. Hu, J. Fan, Y. H. Chen, and J. J. Bian, Ceram. Int. 41(1), 10491057 (2015).
http://dx.doi.org/10.1016/j.ceramint.2014.09.027
48.
48.J. H. Ye, Z. G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, and T. Shishido, Chem. Phys. Lett. 356(3-4), 221226 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00254-3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4930043
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4930043
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4930043
2015-09-03
2016-12-04

Abstract

Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO nanoparticle shell. The plasmonic Ag-TiO hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO into renewable hydrocarbon fuel (CH) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4930043.html;jsessionid=WY2GywcKOhsBTb7BLJtxnR1-.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4930043&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4930043&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4930043'
Top,Right1,Right2,Right3,