Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4931763
1.
1.A. Steinfeld, Sol. Energy 78, 603615 (2005).
http://dx.doi.org/10.1016/j.solener.2003.12.012
2.
2.M. Roeb, M. Neises, N. Monnerie, F. Call, H. Simon, C. Sattler, M. Schmücker, and R. Pitz-Paal, Materials 5, 20152054 (2012).
http://dx.doi.org/10.3390/ma5112015
3.
3.M. Kostoglou, S. Lorentzou, and A. G. Konstandopoulos, Int. J. Hydrogen Energy 39, 63176327 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.01.121
4.
4.A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253278 (2008).
http://dx.doi.org/10.1039/B800489G
5.
5.R. Abe, J. Photochem. Photobiol. C 11, 179209 (2010).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.02.003
6.
6.K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 26552661 (2010).
http://dx.doi.org/10.1021/jz1007966
7.
7.X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 65036570 (2010).
http://dx.doi.org/10.1021/cr1001645
8.
8.K. Maeda, J. Photochem. Photobiol. C 12, 237268 (2011).
http://dx.doi.org/10.1016/j.jphotochemrev.2011.07.001
9.
9.S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav, and S. Dass, Int. J. Hydrogen Energy 37, 1871318730 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.10.028
10.
10.M. S. Prévot and K. Sivula, J. Phys. Chem. C 117, 1787917893 (2013).
http://dx.doi.org/10.1021/jp405291g
11.
11.F. E. Osterloh, Chem. Soc. Rev. 42, 22942320 (2013).
http://dx.doi.org/10.1039/C2CS35266D
12.
12.A. A. Ismail and D. W. Bahnemann, Sol. Energy Mater. Sol. Cells 128, 85101 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.04.037
13.
13.S. Cho, J.-W. Jang, K.-H. Lee, and J. S. Lee, APL Mater. 2, 010703 (2014).
http://dx.doi.org/10.1063/1.4861798
14.
14.R. Marschall, Adv. Funct. Mater. 24, 24212440 (2014).
http://dx.doi.org/10.1002/adfm.201303214
15.
15.T. Hisatomi, J. Kubota, and K. Domen, Chem. Soc. Rev. 43, 75207535 (2014).
http://dx.doi.org/10.1039/C3CS60378D
16.
16.H. Ahmad, S. K. Kamarudin, L. J. Minggu, and M. Kassim, Renewable Sustainable Energy Rev. 43, 599610 (2015).
http://dx.doi.org/10.1016/j.rser.2014.10.101
17.
17.S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, Energy Environ. Sci. 8, 731759 (2015).
http://dx.doi.org/10.1039/C4EE03271C
18.
18.I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy Environ. Sci. 5, 90349043 (2012).
http://dx.doi.org/10.1039/c2ee22341d
19.
19.D. Levy, V. Diella, M. Dapiaggi, A. Sani, M. Gemmi, and A. Pavese, Phys. Chem. Miner. 31, 122129 (2004).
http://dx.doi.org/10.1007/s00269-004-0380-4
20.
20.R. A. Candeia, M. Bernardi, E. Longo, I. Santos, and A. G. Souza, Mater. Lett. 58, 569572 (2004).
http://dx.doi.org/10.1016/S0167-577X(03)00563-9
21.
21.R. A. Candeia, M. Souza, M. Bernardi, S. C. Maestrelli, I. Santos, A. G. Souza, and E. Longo, Ceram. Int. 33, 521525 (2007).
http://dx.doi.org/10.1016/j.ceramint.2005.10.018
22.
22.N. Helaïli, Y. Bessekhouad, K. Bachari, and M. Trari, Mater. Chem. Phys. 148, 734743 (2014).
http://dx.doi.org/10.1016/j.matchemphys.2014.08.042
23.
23.E. Casbeer, V. K. Sharma, and X.-Z. Li, Sep. Purif. Technol. 87, 114 (2012).
http://dx.doi.org/10.1016/j.seppur.2011.11.034
24.
24.Y. Matsumoto, M. Omae, I. Watanabe, and E. Sato, J. Electrochem. Soc. 133, 711716 (1986).
http://dx.doi.org/10.1149/1.2108660
25.
25.Z. Šimša, P. Široký, F. Lukeš, and E. Schmidt, Phys. Status Solidi B 96, 137144 (1979).
http://dx.doi.org/10.1002/pssb.2220960111
26.
26.S. Balaji, R. K. Selvan, L. J. Berchmans, S. Angappan, K. Subramanian, and C. O. Augustin, Mater. Sci. Eng. B 119, 119124 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.01.021
27.
27.K. N. Harish, H. S. B. Naik, P. N. P. Kumar, and R. Viswanath, Catal. Sci. Technol. 2, 10331039 (2012).
http://dx.doi.org/10.1039/c2cy00503d
28.
28.A. Manikandan, E. Hema, M. Durka, K. Seevakan, T. Alagesan, and S. A. Antony, J. Supercond. Novel Magn. 28, 17831795 (2015).
http://dx.doi.org/10.1007/s10948-014-2945-x
29.
29.A. Manikandan, M. Durka, K. Seevakan, and S. A. Antony, J. Supercond. Novel Magn. 28, 14051416 (2015).
http://dx.doi.org/10.1007/s10948-014-2864-x
30.
30.M. D. Archer, G. C. Morris, and G. K. Yim, J. Electroanal. Chem. 118, 89100 (1981).
http://dx.doi.org/10.1016/S0022-0728(81)80534-7
31.
31.M. S. Antonious, M. Etman, M. Guyot, and T. Merceron, Mater. Res. Bull. 21, 15151523 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90093-0
32.
32.C. Ramankutty and S. Sugunan, Appl. Catal., A 218, 3951 (2001).
http://dx.doi.org/10.1016/S0926-860X(01)00610-X
33.
33.R. C. C. Costa, M. F. F. Lelis, L. C. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. Rios, C. N. Silva, and R. M. Lago, Catal. Commun. 4, 525529 (2003).
http://dx.doi.org/10.1016/j.catcom.2003.08.002
34.
34.R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva, and R. M. Lago, J. Hazard. Mater. 129, 171178 (2006).
http://dx.doi.org/10.1016/j.jhazmat.2005.08.028
35.
35.G. K. Reddy, K. Gunasekara, P. Boolchand, and P. G. Smirniotis, J. Phys. Chem. C 115, 920930 (2011).
http://dx.doi.org/10.1021/jp102959p
36.
36.M. Büchler, P. Schmucki, H. Böhni, T. Stenberg, and T. Mäntylä, J. Electrochem. Soc. 145, 378 (1998).
http://dx.doi.org/10.1149/1.1838272
37.
37.L. G. J. de Haart and G. Blasse, Solid State Ionics 16, 137139 (1985).
http://dx.doi.org/10.1016/0167-2738(85)90035-9
38.
38.L. G. J. de Haart and G. Blasse, J. Electrochem. Soc. 132, 29332938 (1985).
http://dx.doi.org/10.1149/1.2113696
39.
39.F. A. Benko and F. P. Koffyberg, Mater. Res. Bull. 21, 11831188 (1986).
http://dx.doi.org/10.1016/0025-5408(86)90045-0
40.
40.H. Zazoua, A. Boudjemaa, R. Chebout, and K. Bachari, Int. J. Energy Res. 38, 20102018 (2014).
http://dx.doi.org/10.1002/er.3215
41.
41.Y. Matsumoto, M. Omae, K. Sugiyama, and E. Sato, J. Phys. Chem. 91, 577581 (1987).
http://dx.doi.org/10.1021/j100287a018
42.
42.Y. Matsumoto, K. Sugiyama, and E.-I. Sato, J. Electrochem. Soc. 135, 98104 (1988).
http://dx.doi.org/10.1149/1.2095599
43.
43.Y. Matsumoto, K. Sugiyama, and E.-I. Sato, J. Solid State Chem. 74, 117125 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90337-4
44.
44.S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, and T. Ishihara, J. Am. Chem. Soc. 132, 1734317345 (2010).
http://dx.doi.org/10.1021/ja106930f
45.
45.S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, T. Ishihara, T. Taniguchi, M. Koinuma, and Y. Matsumoto, Electrochemistry 79, 797800 (2011).
http://dx.doi.org/10.5796/electrochemistry.79.797
46.
46.S. Ida, K. Yamada, M. Matsuka, H. Hagiwara, and T. Ishihara, Electrochim. Acta 82, 397401 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.03.174
47.
47.J. Cao, T. Kako, P. Li, S. Ouyang, and J. Ye, Electrochem. Commun. 13, 275278 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.01.002
48.
48.J. Cao, J. Xing, Y. Zhang, H. Tong, Y. Bi, T. Kako, M. Takeguchi, and J. Ye, Langmuir 29, 31163124 (2013).
http://dx.doi.org/10.1021/la304377z
49.
49.K. Sekizawa, T. Nonaka, T. Arai, and T. Morikawa, ACS Appl. Mater. Interfaces 6, 1096910973 (2014).
http://dx.doi.org/10.1021/am502500y
50.
50.B. T. Chang, M. Jakani, G. Campet, and J. Claverie, J. Solid State Chem. 72, 201208 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90023-0
51.
51.H. Yang, Y. Mao, M. Li, P. Liu, and Y. Tong, New J. Chem. 37, 29652968 (2013).
http://dx.doi.org/10.1039/c3nj00627a
52.
52.G. Rekhila, Y. Bessekhouad, and M. Trari, Int. J. Hydrogen Energy 38, 63356343 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.03.087
53.
53.A. A. Tahir and K. G. U. Wijayantha, J. Photochem. Photobiol., A 216, 119125 (2010).
http://dx.doi.org/10.1016/j.jphotochem.2010.07.032
54.
54.A. A. Tahir, H. A. Burch, K. G. U. Wijayantha, and B. G. Pollet, Int. J. Hydrogen Energy 38, 43154323 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.01.130
55.
55.H. H. Kung, H. S. Jarrett, A. W. Sleight, and A. Ferretti, J. Appl. Phys. 48, 24632469 (1977).
http://dx.doi.org/10.1063/1.324010
56.
56.H. G. Kim, P. H. Borse, J. S. Jang, E. D. Jeong, O.-S. Jung, Y. J. Suh, and J. S. Lee, Chem. Commun. 58895891 (2009).
http://dx.doi.org/10.1039/b911805e
57.
57.H. G. Kim, P. H. Borse, W. Choi, and J. S. Lee, Angew. Chem., Int. Ed. 44, 45854589 (2005).
http://dx.doi.org/10.1002/anie.200500064
58.
58.P. H. Borse, C. R. Cho, K. T. Lim, Y. J. Lee, T. E. Hong, J. S. Bae, E. D. Jeong, H. J. Kim, and H. G. Kim, J. Korean Phys. Soc. 58, 16721676 (2011).
http://dx.doi.org/10.3938/jkps.58.1672
59.
59.K. Dileep, B. Loukya, N. Pachauri, A. Gupta, and R. Datta, J. Appl. Phys. 116, 103505 (2014).
http://dx.doi.org/10.1063/1.4895059
60.
60.S. Saadi, A. Bouguelia, and M. Trari, Renewable Energy 31, 22452256 (2006).
http://dx.doi.org/10.1016/j.renene.2005.10.014
61.
61.A. Kezzim, N. Nasrallah, A. Abdi, and M. Trari, Energy Convers. Manage. 52, 28002806 (2011).
http://dx.doi.org/10.1016/j.enconman.2011.02.014
62.
62.P. H. Borse, J. S. Jang, S. J. Hong, J. S. Lee, J. H. Jung, T. E. Hong, C. W. Ahn, E. D. Jeong, K. S. Hong, J. H. Yoon, and H. G. Kim, J. Korean Phys. Soc. 55, 14721477 (2009).
http://dx.doi.org/10.3938/jkps.55.1472
63.
63.S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, and M. Trari, Appl. Energy 87, 22302236 (2010).
http://dx.doi.org/10.1016/j.apenergy.2009.12.016
64.
64.R. Dom, R. Subasri, N. Y. Hebalkar, A. S. Chary, and P. H. Borse, RSC Adv. 2, 1278212791 (2012).
http://dx.doi.org/10.1039/c2ra21910g
65.
65.B. D. James, G. N. Baum, J. Perez, and K. N. Baum, Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production (Directed Technologies, Inc., Arlington, VA, 2009).
66.
66.B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, and T. F. Jaramillo, Energy Environ. Sci. 6, 19832002 (2013).
http://dx.doi.org/10.1039/c3ee40831k
67.
67.J. H. Kim, J. H. Kim, J.-W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee, and J. S. Lee, Adv. Energy Mater. 5, 1401933 (2015).
http://dx.doi.org/10.1002/aenm.201401933
68.
68.R. Dom, G. S. Kumar, N. Y. Hebalkar, S. V. Joshi, and P. H. Borse, RSC Adv. 3, 1521715224 (2013).
http://dx.doi.org/10.1039/c3ra42051e
69.
69.K. J. McDonald and K.-S. Choi, Chem. Mater. 23, 48634869 (2011).
http://dx.doi.org/10.1021/cm202399g
70.
70.Y. Guo, Y. Fu, Y. Liu, and S. Shen, RSC Adv. 4, 3696736972 (2014).
http://dx.doi.org/10.1039/C4RA05289G
71.
71.M. G. Ahmed, T. A. Kandiel, A. Y. Ahmed, I. Kretschemer, F. Rashwan, and D. Bahnemann, J. Phys. Chem. C 119, 58645871 (2015).
http://dx.doi.org/10.1021/jp512804p
72.
72.E. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J.-W. Jang, H. Jun, J. Kubota, K. Domen, and J. S. Lee, J. Am. Chem. Soc. 135, 53755383 (2013).
http://dx.doi.org/10.1021/ja308723w
73.
73.E. S. Kim, H. J. Kang, G. Magesh, J. Y. Kim, J.-W. Jang, and J. S. Lee, ACS Appl. Mater. Interfaces 6, 1776217769 (2014).
http://dx.doi.org/10.1021/am504283t
74.
74.M. W. Kanan and D. G. Nocera, Science 321, 10721075 (2008).
http://dx.doi.org/10.1126/science.1162018
75.
75.M. W. Kanan, Y. Surendranath, and D. G. Nocera, Chem. Soc. Rev. 38, 109114 (2009).
http://dx.doi.org/10.1039/B802885K
76.
76.E. M. P. Steinmiller and K.-S. Choi, Proc. Natl. Acad. Sci. U. S. A. 106, 2063320636 (2009).
http://dx.doi.org/10.1073/pnas.0910203106
77.
77.M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, and D. G. Nocera, J. Am. Chem. Soc. 132, 1369213701 (2010).
http://dx.doi.org/10.1021/ja1023767
78.
78.Y. Surendranath, M. W. Kanan, and D. G. Nocera, J. Am. Chem. Soc. 132, 1650116509 (2010).
http://dx.doi.org/10.1021/ja106102b
79.
79.G. M. Carroll, D. K. Zhong, and D. R. Gamelin, Energy Environ. Sci. 8, 577584 (2015).
http://dx.doi.org/10.1039/C4EE02869D
80.
80.Y. Matsumoto and E. Sato, Mater. Chem. Phys. 14, 397426 (1986).
http://dx.doi.org/10.1016/0254-0584(86)90045-3
81.
81.N. K. Singh, S. K. Tiwari, K. L. Anitha, and R. N. Singh, J. Chem. Soc., Faraday Trans. 92, 2397 (1996).
http://dx.doi.org/10.1039/ft9969202397
82.
82.R. Singh, N. Singh, and J. Singh, Electrochim. Acta 47, 38733879 (2002).
http://dx.doi.org/10.1016/S0013-4686(02)00354-7
83.
83.R. Singh, N. Singh, J. Singh, G. Balaji, and N. Gajbhiye, Int. J. Hydrogen Energy 31, 701707 (2006).
http://dx.doi.org/10.1016/j.ijhydene.2005.07.003
84.
84.T. Pandiarajan, S. Ravichandran, and L. J. Berchmans, RSC Adv. 4, 6436464370 (2014).
http://dx.doi.org/10.1039/C4RA09806D
85.
85.J. Y. C. Chen, J. T. Miller, J. B. Gerken, and S. S. Stahl, Energy Environ. Sci. 7, 1382 (2014).
http://dx.doi.org/10.1039/c3ee43811b
86.
86.M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale 7, 89208930 (2015).
http://dx.doi.org/10.1039/C4NR07243J
87.
87.L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S. D. Tilley, and M. Grätzel, Adv. Funct. Mater. 24, 76817688 (2014).
http://dx.doi.org/10.1002/adfm.201402742
88.
88.P. A. Mangrulkar, V. Polshettiwar, N. K. Labhsetwar, R. S. Varma, and S. S. Rayalu, Nanoscale 4, 52025209 (2012).
http://dx.doi.org/10.1039/c2nr30819c
89.
89.P. H. Borse, J. Y. Kim, J. S. Lee, K. T. Lim, E. D. Jeong, J. S. Bae, J.-H. Yoon, S. M. Yu, and H. G. Kim, J. Korean Phys. Soc. 61, 7379 (2012).
http://dx.doi.org/10.3938/jkps.61.73
90.
90.T. Peng, X. Zhang, H. Lv, and L. Zan, Catal. Commun. 28, 116119 (2012).
http://dx.doi.org/10.1016/j.catcom.2012.08.031
91.
91.D. Hong, Y. Yamada, M. Sheehan, S. Shikano, C.-H. Kuo, M. Tian, C.-K. Tsung, and S. Fukuzumi, ACS Sustainable Chem. Eng. 2, 25882594 (2014).
http://dx.doi.org/10.1021/sc500484b
92.
92.H. S. Kim, D. Kim, B. S. Kwak, G. B. Han, M.-H. Um, and M. Kang, Chem. Eng. J. 243, 272279 (2014).
http://dx.doi.org/10.1016/j.cej.2013.12.046
93.
93.H. Yang, J. Yan, Z. Lu, X. Cheng, and Y. Tang, J. Alloys Compd. 476, 715719 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.09.104
94.
94.P. H. Borse, J. S. Jang, J. S. Lee, F. N. Khan, M. G. Ha, J. P. Kim, J. S. Bae, E. D. Jeong, and H. G. Kim, J. Korean Phys. Soc. 59, 27502755 (2011).
http://dx.doi.org/10.3938/jkps.59.2750
95.
95.H. Lv, L. Ma, P. Zeng, D. Ke, and T. Peng, J. Mater. Chem. 20, 36653672 (2010).
http://dx.doi.org/10.1039/b919897k
96.
96.X. Xu, A. K. Azad, and J. T. Irvine, Catal. Today 199, 2226 (2013).
http://dx.doi.org/10.1016/j.cattod.2012.03.013
97.
97.L. M. Peter and K. G. U. Wijayantha, ChemPhysChem 15, 19831995 (2014).
http://dx.doi.org/10.1002/cphc.201402024
98.
98.Y. Matsumoto, J. Solid State Chem. 126, 227234 (1996).
http://dx.doi.org/10.1006/jssc.1996.0333
99.
99.J. P. Jacobs, A. Maltha, J. Reintjes, J. Drimal, V. Ponec, and H. H. Brongersma, J. Catal. 147, 294300 (1994).
http://dx.doi.org/10.1006/jcat.1994.1140
100.
100.I. E. Wachs and K. Routray, ACS Catal. 2, 12351246 (2012).
http://dx.doi.org/10.1021/cs2005482
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4931763
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4931763
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4931763
2015-09-25
2016-09-29

Abstract

The utilization of solar light for the photoelectrochemical and photocatalytic production of molecular hydrogen from water is a scientific and technical challenge. Semiconductors with suitable properties to promote solar-driven water splitting are a desideratum. A hitherto rarely investigated group of semiconductors are ferrites with the empirical formula MFeO and related compounds. This contribution summarizes the published results of the experimental investigations on the photoelectrochemical and photocatalytic properties of these compounds. It will be shown that the potential of this group of compounds in regard to the production of solar hydrogen has not been fully explored yet.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4931763.html;jsessionid=bINIIfSPP2iDMXLxhSDU0qOg.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4931763&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4931763&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4931763'
Top,Right1,Right2,Right3,