Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4932347
1.
1.A. Ohtomo and H. Hwang, Nature 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
2.
2.W. D. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. A. Crooker, Nat. Mater. 13, 298 (2014).
http://dx.doi.org/10.1038/nmat3914
3.
3.R. Perez-Casero, J. Perrière, A. Gutierrez-Llorente, D. Defourneau, E. Millon, W. Seiler, and L. Soriano, Phys. Rev. B 75, 165317 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.165317
4.
4.R. F. Klie, Y. Ito, S. Stemmer, and N. D. Browning, in International Symposium on Spectroscopy of Materials [Ultramicroscopy 86, 289 (2001)].
http://dx.doi.org/10.1016/s0304-3991(00)00120-0
5.
5.L. Suescun, B. Dabrowski, J. Mais, S. Remsen, J. W. Richardson, E. R. Maxey, and J. D. Jorgensen, Chem. Mater. 20, 1636 (2008).
http://dx.doi.org/10.1021/cm703139c
6.
6.K. Kamiya, M. Young Yang, S.-G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, Appl. Phys. Lett. 100, 073502 (2012).
http://dx.doi.org/10.1063/1.3685222
7.
7.F. Bi, M. Huang, S. Ryu, H. Lee, C.-W. Bark, C.-B. Eom, P. Irvin, and J. Levy, Nat. Commun. 5, 5019 (2014).
http://dx.doi.org/10.1038/ncomms6019
8.
8.A. Lopez-Bezanilla, P. Ganesh, and P. B. Littlewood, Phys. Rev. B 92, 115112 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.115112
9.
9.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
10.
10.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
11.
11.G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
12.
12.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
13.
13.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
14.
14.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
15.
15.M. Kim, G. Duscher, N. D. Browning, K. Sohlberg, S. T. Pantelides, and S. J. Pennycook, Phys. Rev. Lett. 86, 4056 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4056
16.
16.P. Ganesh, H. Zhuang, P. R. C. Kent, V. R. Cooper, and H. Xu, “Cluster-expansion and Monte Carlo studies of oxygen vacancy in SrTiO3: Bulk, surfaces and heterostructures” (unpublished).
17.
17.R. Mishra, Y.-M. Kim, J. Salafranca, S. K. Kim, S. H. Chang, A. Bhattacharya, D. D. Fong, S. J. Pennycook, S. T. Pantelides, and A. Y. Borisevich, Nano Lett. 14, 2694 (2014).
http://dx.doi.org/10.1021/nl500601d
18.
18.Y.-M. Kim, J. He, M. D. Biegalski, H. Ambaye, V. Lauter, H. M. Christen, S. T. Pantelides, S. J. Pennycook, S. V. Kalinin, and A. Y. Borisevich, Nat. Mater. 11, 888 (2012).
http://dx.doi.org/10.1038/nmat3393
19.
19.Z. Hou and K. Terakura, J. Phys. Soc. Jpn. 79, 114704 (2010).
http://dx.doi.org/10.1143/JPSJ.79.114704
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4932347
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4932347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4932347
2015-10-06
2016-12-04

Abstract

Correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO. Hole and electron doping of oxygen deficient SrTiO yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments in the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4932347.html;jsessionid=UIrEpkX8i8T8DCyVv2Y1PPbU.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4932347&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4932347&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4932347'
Top,Right1,Right2,Right3,