Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/10/10.1063/1.4933236
1.
1.S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, and K. Kang, Adv. Energy Mater. 22, 710 (2012).
http://dx.doi.org/10.1002/aenm.201200026
2.
2.E. W. Clarke and H. S. Washington, “The composition of the earth’s crust,” U.S. Government Printing Office (1924).
3.
3.S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, Adv. Funct. Mater. 21, 3859 (2011).
http://dx.doi.org/10.1002/adfm.201100854
4.
4.N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, and S. Komaba, Nat. Mater. 11, 512 (2012).
http://dx.doi.org/10.1038/nmat3309
5.
5.H. Yoshida, N. Yabuuchi, and S. Komaba, Electrochem. Commun. 34, 60 (2013).
http://dx.doi.org/10.1016/j.elecom.2013.05.012
6.
6.Q. Huang, M. L. Foo, R. A. Pascal, Jr., J. W. Lynn, B. H. Toby, T. He, H. W. Zandbergen, and R. J. Cava, Phys. Rev. B 70, 184110 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184110
7.
7.Y. S. Meng, Y. Himuma, and G. Ceder, J. Chem. Phys. 128, 104708 (2008).
http://dx.doi.org/10.1063/1.2839292
8.
8.M. Medarde, M. Mena, J. L. Gavilano, E. Pomjakushina, J. Sugiyama, K. Kamazawa, V. Yu. Pomjakushin, D. Sheptyakov, B. Batlogg, H. R. Ott, M. Mansson, and F. Juranyi, Phys. Rev. Lett. 110, 266401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.266401
9.
9.R. Berthelot, D. Carlier, and C. Delmas, Nat. Mater. 10, 74 (2010).
http://dx.doi.org/10.1038/nmat2920
10.
10.X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S. P. Ong, H. Chen, A. Toumar, J.-C. Idrobo, Y. Lei, J. Bai, F. Wang, J. W. Lynn, Y. S. Lee, and G. Ceder, Nat. Mater. 13, 586 (2014).
http://dx.doi.org/10.1038/nmat3964
11.
11.I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12685
12.
12.K. Takada, H. Sakurai, E. Takeyama-Muromachi, F. Izumi, R. A. Dalanian, and T. Sasaki, Nature 422, 53 (2003).
http://dx.doi.org/10.1038/nature01450
13.
13.J. J. Braconnier, C. Delmas, C. Fouassier, and P. Hagenmuller, Mater. Res. Bull. 15, 1797 (1980).
http://dx.doi.org/10.1016/0025-5408(80)90199-3
14.
14.T. Shibata, W. Kobayashi, and Y. Moritomo, AIP Adv. 3, 032104 (2012).
http://dx.doi.org/10.1063/1.4794719
15.
15.T. Shibata, W. Kobayashi, and Y. Moritomo, Appl. Phys. Express 6, 097101 (2013).
http://dx.doi.org/10.7567/APEX.6.097101
16.
16.T. Shibata, W. Kobayashi, and Y. Moritomo, Appl. Phys. Express 8, 029201 (2015).
http://dx.doi.org/10.7567/APEX.8.029201
17.
17.T. Shibata, Y. Fukuzumi, W. Kobayashi, and Y. Moritomo, Sci. Rep. 5, 9006 (2015).
http://dx.doi.org/10.1038/srep09006
18.
18.F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).
http://dx.doi.org/10.4028/www.scientific.net/SSP.130.15
19.
19.E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakawa, and N. Ikeda, Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 1045 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)00639-8
20.
20.T. Shimono, D. Tanabe, W. Kobayashi, and Y. Moritomo, J. Phys. Soc. Jpn. 82, 083601 (2013).
http://dx.doi.org/10.7566/JPSJ.82.083601
21.
21.J. Beltran-Huarac, J. Palomino, O. Resto, J. Wang, W. M. Jadwisienczak, B. R. Weiner, and G. Morell, RSC Adv. 4, 38103 (2014).
http://dx.doi.org/10.1039/C4RA05561F
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/10/10.1063/1.4933236
Loading
/content/aip/journal/aplmater/3/10/10.1063/1.4933236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/10/10.1063/1.4933236
2015-10-19
2016-09-28

Abstract

Layered cobalt oxide, P2-NaCoO, is a prototypical cathode material for sodium-ion secondary battery. We systematically investigated the rate dependence of the discharge capacity () in three thin films of Na CoO with different film thickness () and in-plane grain radius (). With subtracting conventional voltage drop effect on , we derived an intrinsic rate dependence of . We found a scaling relation between the renormalized discharge rate ( 2/; and are the Na + diffusion constant and discharge time, respectively) and relative capacity (=/ ; is the value at a low rate limit). The observed scaling relation is interpreted in terms of the Na + intercalation process at the electrolyte-NaCoO interface and Na + diffusion process within Na CoO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/10/1.4933236.html;jsessionid=tyznsdA_ogFm6--3cdh7cpdr.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/10/10.1063/1.4933236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/10/10.1063/1.4933236&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/10/10.1063/1.4933236'
Top,Right1,Right2,Right3,