Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/11/10.1063/1.4935060
1.
1.C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).
http://dx.doi.org/10.1038/nnano.2007.411
2.
2.C. K. Chan, X. F. Zhang, and Y. Cui, Nano Lett. 8, 307 (2008).
http://dx.doi.org/10.1021/nl0727157
3.
3.T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O’Dwyer, and K. M. Ryan, Nano Lett. 14, 716 (2014).
http://dx.doi.org/10.1021/nl403979s
4.
4.F.-W. Yuan, H.-J. Yang, and H.-Y. Tuan, ACS Nano 6, 9932 (2012).
http://dx.doi.org/10.1021/nn303519g
5.
5.D. Wang, Y.-L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordon, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004).
http://dx.doi.org/10.1021/ja047435x
6.
6.J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, J. Electrochem. Soc. 151, A698 (2004).
http://dx.doi.org/10.1149/1.1697412
7.
7.S. W. Lee, I. Ryu, W. D. Nix, and Y. Cui, Extreme Mech. Lett. 2, 15 (2015).
http://dx.doi.org/10.1016/j.eml.2015.01.009
8.
8.J. Park, W. Lu, and A. M. Sastry, J. Electrochem. Soc. 158, A201 (2011).
http://dx.doi.org/10.1149/1.3526597
9.
9.D. A. Smith, V. C. Holmberg, D. C. Lee, and B. A. Korgel, J. Phys. Chem. C 112, 10725 (2008).
http://dx.doi.org/10.1021/jp8010487
10.
10.L. T. Ngo, D. Almecija, J. E. Sader, B. Daly, N. Petkov, J. D. Holmes, D. Erts, and J. J. Boland, Nano Lett. 6, 2964 (2006).
http://dx.doi.org/10.1021/nl0619397
11.
11.B. Varghese, Y. Zhang, L. Dai, V. B. C. Tan, C. T. Lim, and C.-H. Sow, Nano Lett. 8, 3226 (2008).
http://dx.doi.org/10.1021/nl801555d
12.
12.H. Ni, X. Li, and H. Gao, Appl. Phys. Lett. 88, 043108 (2006).
http://dx.doi.org/10.1063/1.2165275
13.
13.B. Wen, J. E. Sader, and J. J. Boland, Phys. Rev. Lett. 101, 175502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.175502
14.
14.B. R. Burg, V. Bianco, J. Schneider, and D. Poulikakos, J. Appl. Phys. 107, 124308 (2010).
http://dx.doi.org/10.1063/1.3448497
15.
15.A. Subramanian, T. Choi, L. X. Dong, J. Tharian, U. Sennhauser, D. Poulikakos, and B. J. Nelson, Appl. Phys. A 89, 133 (2007).
http://dx.doi.org/10.1007/s00339-007-4128-0
16.
16.A. Subramanian, N. S. Hudak, J. Y. Huang, Y. Zhan, J. Lou, and J. P. Sullivan, Nanotechnology 25, 265402 (2014).
http://dx.doi.org/10.1088/0957-4484/25/26/265402
17.
17.N. K. R. Palapati, E. Pomerantseva, and A. Subramanian, Nanoscale 7, 3109 (2015).
http://dx.doi.org/10.1039/C4NR06303A
18.
18.J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999).
http://dx.doi.org/10.1063/1.1150021
19.
19.A. Subramanian, A. R. Alt, L. X. Dong, B. E. Kratochvil, C. R. Bolognesi, and B. J. Nelson, ACS Nano 3, 2953 (2009).
http://dx.doi.org/10.1021/nn900436x
20.
20.E. Borchi, S. D. Gennaro, R. Macii, and M. Zoli, J. Phys. D: Appl. Phys. 21, 1304 (1988).
http://dx.doi.org/10.1088/0022-3727/21/8/011
21.
21.J. J. Wortman and R. A. Evans, J. Appl. Phys. 36, 153 (1965).
http://dx.doi.org/10.1063/1.1713863
22.
22.A. J. Lee, M. Kim, C. Lena, and J. R. Chelikowsky, Phys. Rev. B 86, 115331 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115331
23.
23.C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.075505
24.
24.S. Spinner and G. W. Cleek, J. Appl. Phys. 31, 1407 (1960).
http://dx.doi.org/10.1063/1.1735852
25.
25.C. R. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials (Prentice Hall, Englewood Cliffs, NJ, 1973).
26.
26.S. T. Boles, A. Sedlmayr, O. Kraft, and R. Monig, Appl. Phys. Lett. 100, 243901 (2012).
http://dx.doi.org/10.1063/1.4729145
27.
27.S. Hoffman, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gosele, and C. Ballif, Nano Lett. 6, 622 (2006).
http://dx.doi.org/10.1021/nl052223z
28.
28.H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Nat. Nanotechnol. 7, 310 (2012).
http://dx.doi.org/10.1038/nnano.2012.35
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/11/10.1063/1.4935060
Loading
/content/aip/journal/aplmater/3/11/10.1063/1.4935060
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/11/10.1063/1.4935060
2015-11-02
2016-10-01

Abstract

This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/11/1.4935060.html;jsessionid=vI1gvZR984-6DKuhyn4spgl_.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/11/10.1063/1.4935060&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/11/10.1063/1.4935060&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/11/10.1063/1.4935060'
Top,Right1,Right2,Right3,