Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Bachmeier, S. Hall, S. W. Ragsdale, and F. A. Armstrong, J. Am. Chem. Soc. 136, 13518 (2014).
2.J. Bonin, M. Robert, and M. Routier, J. Am. Chem. Soc. 136, 16768 (2014).
3.J. Ettedgui, Y. Diskin-Posner, L. Weiner, and R. Neumann, J. Am. Chem. Soc. 133, 188 (2010).
4.S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, Angew. Chem., Int. Ed. 52, 7372 (2013).
5.J. Ronge, T. Bosserez, D. Martel, C. Nervi, L. Boarino, F. Taulelle, G. Decher, S. Bordiga, and J. A. Martens, Chem. Soc. Rev. 43, 7963 (2014).
6.T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Nature 277, 637 (1979).
7.K. R. Thampi, J. Kiwi, and M. Gratzel, Nature 327, 506 (1987).
8.B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Annu. Rev. Phys. Chem. 63, 541 (2012).
9.G. Magesh, E. S. Kim, H. J. Kang, M. Banu, J. Y. Kim, J. H. Kim, and J. S. Lee, J. Mater. Chem. A 2, 2044 (2014).
10.J. Cheng, M. Zhang, G. Wu, X. Wang, J. Zhou, and K. Cen, Sol. Energy Mater. Sol. Cells 132, 606 (2015).
11.K. Rajeshwar, N. R. de Tacconi, G. Ghadimkhani, W. Chanmanee, and C. Janáky, ChemPhysChem 14, 2251 (2013).
12.K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 96, 052110 (2010).
13.J.-S. Hwang, T.-Y. Liu, S. Chattopadhyay, G.-M. Hsu, A. M. Basilio, H.-W. Chen, Y.-K. Hsu, W.-H. Tu, Y.-G. Lin, K.-H. Chen, C.-C. Li, S.-B. Wang, H.-Y. Chen, and L.-C. Chen, Nanotechnology 24, 055401 (2013).
14.W.-H. Tu, Y.-K. Hsu, C.-H. Yen, C.-I. Wu, J.-S. Hwang, L.-C. Chen, and K.-H. Chen, Electrochem. Commun. 13, 530 (2011).
15.D.-H. Tu, H.-C. Wang, P.-S. Wang, W.-C. Cheng, K.-H. Chen, C.-I. Wu, S. Chattopadhyay, and L.-C. Chen, Int. J. Hydrogen Energy 38, 14433 (2013).
16.P. D. Tran, L. H. Wong, J. Barber, and J. S. C. Loo, Energy environ sci 5, 5902 (2012).
17.H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y.-J. Kim, and G.-C. Yi, ACS Nano 2, 637 (2008).
18.D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A.-R. Hakima, and Z. Mi, Nano Lett. 11, 2353 (2011).
19.S. Schäfer, S. A. Wyrzgol, R. Caterino, A. Jentys, S. J. Schoell, M. Hävecker, A. Knop-Gericke, J. A. Lercher, I. D. Sharp, and M. Stutzmann, J. Am. Chem. Soc. 134, 12528 (2012).
20.L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, ACS Appl. Mater. Interfaces 6, 2235 (2014).
21.M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 6, 6797 (2015).
22.K. Maeda and K. Domen, J. Phys. Chem. C 111, 7851 (2007).
23.S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, Appl. Phys. Express 4, 117101 (2011).
24.S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, Jpn. J. Appl. Phys. 51, 02BP07 (2012).
25.S. Yotsuhashi, M. Deguchi, H. Hashiba, Y. Zenitani, R. Hinogami, Y. Yamada, and K. Ohkawa, Appl. Phys. Lett. 100, 243904 (2012).
26.S. Yotsuhashi, M. Deguchi, Y. Yamada, and K. Ohkawa, AIP Adv. 4, 067135 (2014).
27.S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, Nanoscale 5, 5283 (2013).
28.E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
29.M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, ACS Nano 7, 7886 (2013).
30.M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 5, 3825 (2014).
31.B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, Nano Lett. 13, 4356 (2013).
32.B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, Nanotechnology 24, 175401 (2013).
33.L. Li, X. Mu, W. Liu, X. Kong, S. Fan, Z. Mi, and C.-J. Li, Angew. Chem., Int. Ed. 53, 14106 (2014).
34.L. Li, S. Fan, X. Mu, Z. Mi, and C.-J. Li, J. Am. Chem. Soc. 136, 7793 (2014).
35.M. Schafer, M. Gunther, C. Langer, J. MuBener, M. Feneberg, P. Uredat, M. T. Elm, P. Hille, J. Schörmann, J. Teubert, T. Henning, P. J. Klar, and M. Eickhoff, Nanotechnology 26, 135704 (2015).
36.H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
37.J. Wallys, S. Hoffmann, F. Furtmayr, J. Teubert, and M. Eickhoff, Nanotechnology 23, 165701 (2012).
38.J. Schörmann, P. Hille, M. Schäfer, J. Müßener, P. Becker, P. J. Klar, M. Kleine-Boymann, M. Rohnke, M. de la Mata, J. Arbiol, D. M. Hofmann, J. Teubert, and M. J. Eickhoff, J. Appl. Phys. 114, 103505 (2013).
39.Y. Hori, K. Kikuchi, and S. Suzuki, Chem. Lett. 14, 1695 (1985).
40.M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma, and L. J. Oniciu, Appl. Electrochem. 27, 875 (1997).
41.S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, Nano Lett. 15, 2721 (2015).
42.J. Qiao, Y. Liu, F. Hong, and J. Zhang, Chem. Soc. Rev. 43, 631 (2014).

Data & Media loading...


Article metrics loading...



We report on the direct conversion of carbon dioxide (CO) in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu) cathode. Various products including methane (CH), carbon monoxide (CO), and formic acid (HCOOH) were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO reduction reaction on low cost, large area Si substrates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd