Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/11/10.1063/1.4935307
1.
1.A. Bachmeier, S. Hall, S. W. Ragsdale, and F. A. Armstrong, J. Am. Chem. Soc. 136, 13518 (2014).
http://dx.doi.org/10.1021/ja506998b
2.
2.J. Bonin, M. Robert, and M. Routier, J. Am. Chem. Soc. 136, 16768 (2014).
http://dx.doi.org/10.1021/ja510290t
3.
3.J. Ettedgui, Y. Diskin-Posner, L. Weiner, and R. Neumann, J. Am. Chem. Soc. 133, 188 (2010).
http://dx.doi.org/10.1021/ja1078199
4.
4.S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, Angew. Chem., Int. Ed. 52, 7372 (2013).
http://dx.doi.org/10.1002/anie.201207199
5.
5.J. Ronge, T. Bosserez, D. Martel, C. Nervi, L. Boarino, F. Taulelle, G. Decher, S. Bordiga, and J. A. Martens, Chem. Soc. Rev. 43, 7963 (2014).
http://dx.doi.org/10.1039/c3cs60424a
6.
6.T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Nature 277, 637 (1979).
http://dx.doi.org/10.1038/277637a0
7.
7.K. R. Thampi, J. Kiwi, and M. Gratzel, Nature 327, 506 (1987).
http://dx.doi.org/10.1038/327506a0
8.
8.B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, Annu. Rev. Phys. Chem. 63, 541 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143759
9.
9.G. Magesh, E. S. Kim, H. J. Kang, M. Banu, J. Y. Kim, J. H. Kim, and J. S. Lee, J. Mater. Chem. A 2, 2044 (2014).
http://dx.doi.org/10.1039/c3ta14408a
10.
10.J. Cheng, M. Zhang, G. Wu, X. Wang, J. Zhou, and K. Cen, Sol. Energy Mater. Sol. Cells 132, 606 (2015).
http://dx.doi.org/10.1016/j.solmat.2014.10.015
11.
11.K. Rajeshwar, N. R. de Tacconi, G. Ghadimkhani, W. Chanmanee, and C. Janáky, ChemPhysChem 14, 2251 (2013).
http://dx.doi.org/10.1002/cphc.201300080
12.
12.K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 96, 052110 (2010).
http://dx.doi.org/10.1063/1.3304786
13.
13.J.-S. Hwang, T.-Y. Liu, S. Chattopadhyay, G.-M. Hsu, A. M. Basilio, H.-W. Chen, Y.-K. Hsu, W.-H. Tu, Y.-G. Lin, K.-H. Chen, C.-C. Li, S.-B. Wang, H.-Y. Chen, and L.-C. Chen, Nanotechnology 24, 055401 (2013).
http://dx.doi.org/10.1088/0957-4484/24/5/055401
14.
14.W.-H. Tu, Y.-K. Hsu, C.-H. Yen, C.-I. Wu, J.-S. Hwang, L.-C. Chen, and K.-H. Chen, Electrochem. Commun. 13, 530 (2011).
http://dx.doi.org/10.1016/j.elecom.2011.02.036
15.
15.D.-H. Tu, H.-C. Wang, P.-S. Wang, W.-C. Cheng, K.-H. Chen, C.-I. Wu, S. Chattopadhyay, and L.-C. Chen, Int. J. Hydrogen Energy 38, 14433 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.08.095
16.
16.P. D. Tran, L. H. Wong, J. Barber, and J. S. C. Loo, Energy environ sci 5, 5902 (2012).
http://dx.doi.org/10.1039/c2ee02849b
17.
17.H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y.-J. Kim, and G.-C. Yi, ACS Nano 2, 637 (2008).
http://dx.doi.org/10.1021/nn700320y
18.
18.D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, H. Guo, S. Paradis, A.-R. Hakima, and Z. Mi, Nano Lett. 11, 2353 (2011).
http://dx.doi.org/10.1021/nl2006802
19.
19.S. Schäfer, S. A. Wyrzgol, R. Caterino, A. Jentys, S. J. Schoell, M. Hävecker, A. Knop-Gericke, J. A. Lercher, I. D. Sharp, and M. Stutzmann, J. Am. Chem. Soc. 134, 12528 (2012).
http://dx.doi.org/10.1021/ja3020132
20.
20.L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, ACS Appl. Mater. Interfaces 6, 2235 (2014).
http://dx.doi.org/10.1021/am4058937
21.
21.M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 6, 6797 (2015).
http://dx.doi.org/10.1038/ncomms7797
22.
22.K. Maeda and K. Domen, J. Phys. Chem. C 111, 7851 (2007).
http://dx.doi.org/10.1021/jp070911w
23.
23.S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, Appl. Phys. Express 4, 117101 (2011).
http://dx.doi.org/10.1143/APEX.4.117101
24.
24.S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, Jpn. J. Appl. Phys. 51, 02BP07 (2012).
http://dx.doi.org/10.7567/JJAP.51.02BP07
25.
25.S. Yotsuhashi, M. Deguchi, H. Hashiba, Y. Zenitani, R. Hinogami, Y. Yamada, and K. Ohkawa, Appl. Phys. Lett. 100, 243904 (2012).
http://dx.doi.org/10.1063/1.4729298
26.
26.S. Yotsuhashi, M. Deguchi, Y. Yamada, and K. Ohkawa, AIP Adv. 4, 067135 (2014).
http://dx.doi.org/10.1063/1.4885138
27.
27.S. Zhao, M. G. Kibria, Q. Wang, H. P. T. Nguyen, and Z. Mi, Nanoscale 5, 5283 (2013).
http://dx.doi.org/10.1039/c3nr00387f
28.
28.E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
http://dx.doi.org/10.1021/nl100161z
29.
29.M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, ACS Nano 7, 7886 (2013).
http://dx.doi.org/10.1021/nn4028823
30.
30.M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, Nat. Commun. 5, 3825 (2014).
http://dx.doi.org/10.1038/ncomms4825
31.
31.B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, Nano Lett. 13, 4356 (2013).
http://dx.doi.org/10.1021/nl402156e
32.
32.B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, Nanotechnology 24, 175401 (2013).
http://dx.doi.org/10.1088/0957-4484/24/17/175401
33.
33.L. Li, X. Mu, W. Liu, X. Kong, S. Fan, Z. Mi, and C.-J. Li, Angew. Chem., Int. Ed. 53, 14106 (2014).
http://dx.doi.org/10.1002/anie.201408754
34.
34.L. Li, S. Fan, X. Mu, Z. Mi, and C.-J. Li, J. Am. Chem. Soc. 136, 7793 (2014).
http://dx.doi.org/10.1021/ja5004119
35.
35.M. Schafer, M. Gunther, C. Langer, J. MuBener, M. Feneberg, P. Uredat, M. T. Elm, P. Hille, J. Schörmann, J. Teubert, T. Henning, P. J. Klar, and M. Eickhoff, Nanotechnology 26, 135704 (2015).
http://dx.doi.org/10.1088/0957-4484/26/13/135704
36.
36.H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
http://dx.doi.org/10.1021/nl104536x
37.
37.J. Wallys, S. Hoffmann, F. Furtmayr, J. Teubert, and M. Eickhoff, Nanotechnology 23, 165701 (2012).
http://dx.doi.org/10.1088/0957-4484/23/16/165701
38.
38.J. Schörmann, P. Hille, M. Schäfer, J. Müßener, P. Becker, P. J. Klar, M. Kleine-Boymann, M. Rohnke, M. de la Mata, J. Arbiol, D. M. Hofmann, J. Teubert, and M. J. Eickhoff, J. Appl. Phys. 114, 103505 (2013).
http://dx.doi.org/10.1063/1.4820264
39.
39.Y. Hori, K. Kikuchi, and S. Suzuki, Chem. Lett. 14, 1695 (1985).
http://dx.doi.org/10.1246/cl.1985.1695
40.
40.M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma, and L. J. Oniciu, Appl. Electrochem. 27, 875 (1997).
http://dx.doi.org/10.1023/A:1018441316386
41.
41.S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, Nano Lett. 15, 2721 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00535
42.
42.J. Qiao, Y. Liu, F. Hong, and J. Zhang, Chem. Soc. Rev. 43, 631 (2014).
http://dx.doi.org/10.1039/C3CS60323G
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/11/10.1063/1.4935307
Loading
/content/aip/journal/aplmater/3/11/10.1063/1.4935307
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/11/10.1063/1.4935307
2015-11-09
2016-12-10

Abstract

We report on the direct conversion of carbon dioxide (CO) in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu) cathode. Various products including methane (CH), carbon monoxide (CO), and formic acid (HCOOH) were observed under light illumination. A Faradaic efficiency of ∼10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO reduction reaction on low cost, large area Si substrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/11/1.4935307.html;jsessionid=Os070xyELrmSKzI-bM-jS5f-.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/11/10.1063/1.4935307&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/11/10.1063/1.4935307&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/11/10.1063/1.4935307'
Top,Right1,Right2,Right3,