Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
2.F. Zavaliche, S. Y. Yang, T. Zhao, Y. H. Chu, M. P. Cruz, C. B. Eom, and R. Ramesh, Phase Transitions 79, 991 (2006). 1080/01411590601067144
3.G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
4.D. Sando, A. Barthélémy, and M. Bibes, J. Phys.: Condens. Matter 26, 473201 (2014).
5.S.-Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Schlom, Y.-J. Lee, Y.-H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, Appl. Phys. Lett. 87, 102903 (2005).
6.B. Kundys, M. Viret, D. Colson, and D. O. Kundys, Nat. Mater. 9, 803 (2010).
7.J.-C. Yang, C.-H. Yeh, Y.-T. Chen, S.-C. Liao, R. Huang, H.-J. Liu, C.-C. Hung, S.-H. Chen, S.-L. Wu, C.-H. Lai, Y.-P. Chiu, P.-W. Chiu, and Y.-H. Chu, Nanoscale 6, 10524 (2014).
8.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
9.R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326, 977 (2009).
10.A. R. Damodaran, C.-W. Liang, Q. He, C.-Y. Peng, L. Chang, Y.-H. Chu, and L. W. Martin, Adv. Mater. 23, 3170 (2011).
11.H. M. Christen, J. H. Nam, H. S. Kim, A. J. Hatt, and N. A. Spaldin, Phys. Rev. B 83, 144107 (2011).
12.H.-J. Liu, C.-W. Liang, W.-I. Liang, H.-J. Chen, J.-C. Yang, C.-Y. Peng, G.-F. Wang, F.-N. Chu, Y.-C. Chen, H.-Y. Lee, L. Chang, S.-J. Lin, and Y.-H. Chu, Phys. Rev. B 85, 014104 (2012).
13.H.-J. Liu, H.-J. Chen, W.-I. Liang, C.-W. Liang, H.-Y. Lee, S.-J. Lin, and Y.-H. Chu, J. Appl. Phys. 112, 052002 (2012).
14.J.-C. Yang, Q. He, S. J. Suresha, C.-Y. Kuo, C.-Y. Peng, R. C. Haislmaier, M. A. Motyka, G. Sheng, C. Adamo, H.-J. Lin, Z. Hu, L. Chang, L. H. Tjeng, E. Arenholz, N. J. Podraza, M. Bernhagen, R. Uecker, D. G. Schlom, V. Gopalan, L.-Q. Chen, C.-T. Chen, R. Ramesh, and Y.-H. Chu, Phys. Rev. Lett. 109, 247606 (2012).
15.R. Dan, K.-Y. Yun, and M. Okuyama, J. Phys.: Condens. Matter 18, L97 (2006).
16.H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett. 102, 217603 (2009).
17.O. Diéguez, O. E. González-Vázquez, J. C. Wojdeł, and J. Íñiguez, Phys. Rev. B 83, 094105 (2011).
18.H. Fu and R. E. Cohen, Nature 403, 281 (2000).
19.M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H.-K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature 451, 545 (2008).
20.T. Asada and Y. Koyama, Phys. Rev. B 75, 214111 (2007).
21.F. Pailloux, M. Couillard, S. Fusil, F. Bruno, W. Saidi, V. Garcia, C. Carrétéro, E. Jacquet, M. Bibes, A. Barthélémy, G. A. Botton, and J. Pacaud, Phys. Rev. B 89, 104106 (2014).
22.Z.-H. Chen, A. R. Damodaran, R. Xu, S. Lee, and L. W. Martin, Appl. Phys. Lett. 104, 182908 (2014).
23.Q. He, Y.-H. Chu, J. T. Heron, S.-Y. Yang, W.-I. Liang, C.-Y. Kuo, H.-J. Lin, P. Yu, C.-W. Liang, R. J. Zeches, W.-C. Kuo, J.-Y. Juang, C.-T. Chen, E. Arenholz, A. Scholl, and R. Ramesh, Nat. Commun. 2, 225 (2011).
24.A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
25.J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011).
26.P. Kuiper, B. G. Searle, P. Rudolf, L.-H. Tjeng, and C.-T. Chen, Phys. Rev. Lett. 70, 1549 (1993).
27.F. Nolting, A. Scholl, J. Stohr, J. W. Seo, J. Fompeyrine, H. Siegwart, J. P. Locquet, S. Anders, J. Luning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, Nature 405, 767 (2000).
28.D. Alders, L.-H. Tjeng, F. C. Voogt, T. Hibma, G. A. Sawatzky, C.-T. Chen, J. Vogel, M. Sacchi, and S. Iacobucci, Phys. Rev. B 57, 11623 (1998).
29.E. Arenholz, G. van der Laan, R. V. Chopdekar, and Y. Suzuki, Phys. Rev. B 74, 094407 (2006).
30.S. I. Csiszar, M. W. Haverkort, Z. Hu, A. Tanaka, H. H. Hsieh, H. J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng, Phys. Rev. Lett. 95, 187205 (2005).
31.N. Hollmann, Z. Hu, T. Willers, L. Bohatý, P. Becker, A. Tanaka, H. H. Hsieh, H. J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 82, 184429 (2010).
32.M. W. Haverkort, S. I. Csiszar, Z. Hu, S. Altieri, A. Tanaka, H. H. Hsieh, H. J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng, Phys. Rev. B 69, 020408 (2004).
33.K.-T. Ko, M. H. Jung, Q. He, J. H. Lee, C. S. Woo, K. Chu, J. Seidel, B.-G. Jeon, Y. S. Oh, K. H. Kim, W.-I. Liang, H.-J. Chen, Y.-H. Chu, Y. H. Jeong, R. Ramesh, J.-H. Park, and C.-H. Yang, Nat. Commun. 2, 567 (2011).
34.M. N. Iliev, M. V. Abrashev, D. Mazumdar, V. Shelke, and A. Gupta, Phys. Rev. B 82, 014107 (2010).
35.M. W. Lufaso and P. M. Woodward, Acta Crystallogr., Sect. B: Struct. Sci. 57, 725 (2001).
36.G. O. Jones and P. A. Thomas, Acta Crystallogr., Sect. B: Struct. Sci. 56, 426 (2000).
37.E. H. Mountstevens, S. A. T. Redfern, and J. P. Attfield, Phys. Rev. B 71, 220102 (2005).
38.J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
39.S. R. Basu, L. W. Martin, Y.-H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008).
40.X.-S. Xu, T. V. Brinzari, S. Lee, Y.-H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, and J. L. Musfeldt, Phys. Rev. B 79, 134425 (2009).
41.J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
42.H. L. Liu, M. K. Lin, Y. R. Cai, C. K. Tung, and Y. H. Chu, Appl. Phys. Lett. 103, 181907 (2013).
43.J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008).

Data & Media loading...


Article metrics loading...



High structural susceptibility of multiferroic BiFeO (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd