Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.U. Bazylinska, S. Drozdek, M. Nyk, J. Kulbacka, M. Samoc, and K. A. Wilk, Langmuir 30, 14931 (2014).
2.Y. Fan, H. Liu, R. Han, L. Huang, H. Shi, Y. Sha, and Y. Jiang, Sci. Rep. 5, 9908 (2015).
3.H. Jin, R. Gui, Z. Wang, F. Zhang, J. Xia, M. Yang, S. Bi, and Y. Xia, Analyst 140, 2037 (2015).
4.V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).
5.A. W. Achtstein, J. Hennig, A. Prudnikau, M. V. Artemyev, and U. Woggon, J. Phys. Chem. C 117, 25756 (2013).
6.J. Dimitrijevic, L. Krapf, C. Wolter, C. Schmidtke, J.-P. Merkl, T. Jochum, A. Kornowski, A. Schueth, A. Gebert, G. Huettmann, T. Vossmeyer, and H. Weller, Nanoscale 6, 10413 (2014).
7.J. Du, Y. Wu, X. Hao, and X. Zhao, J. Mol. Struct. 1006, 650 (2011).
8.K. M. Tsoi, Q. Dai, B. A. Alman, and W. C. W. Chan, Acc. Chem. Res. 46, 662 (2013).
9.H. Chibli, L. Carlini, S. Park, N. M. Dimitrijevic, and J. L. Nadeau, Nanoscale 3, 2552 (2011).
10.A. Franceschetti, H. Fu, L. W. Wang, and A. Zunger, Phys. Rev. B 60, 1819 (1999).
11.X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, and X. W. Sun, Adv. Mater. 24, 4180 (2012).
12.S. J. Yang, J. H. Oh, S. Kim, H. Yang, and Y. R. Do, J. Mater. Chem. C 3, 3582 (2015).
13.A. Thomas, P. V. Nair, and K. George Thomas, J. Phys. Chem. C 118, 3838 (2014).
14.D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar, and P. N. Prasad, J. Am. Chem. Soc. 127, 11364 (2005).
15.Y. Wang, X. Yang, T. C. He, Y. Gao, H. V. Demir, X. W. Sun, and H. D. Sun, Appl. Phys. Lett. 102, 021917 (2013).
16.M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
17.N. S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express 16, 4029 (2008).
18.J. Szeremeta, M. Nyk, D. Wawrzynczyk, and M. Samoc, Nanoscale 5, 2388 (2013).
19.R. Shirazi, A. Kovacs, D. D. Corell, C. Gritti, A. Thorseth, C. Dam-Hansen, P. M. Petersen, and B. Kardynal, J. Lumin. 145, 936 (2014).
20.M. Samoc, A. Samoc, B. Luther-Davies, M. G. Humphrey, and M.-S. Wong, Opt. Mater. 21, 485 (2003).
21.M. Nyk, J. Szeremeta, D. Wawrzynczyk, and M. Samoc, J. Phys. Chem. C 118, 17914 (2014).
22.M. Nyk, D. Wawrzynczyk, J. Szeremeta, and M. Samoc, Appl. Phys. Lett. 100, 041102 (2012).
23.J. Szeremeta, L. Lamch, D. Wawrzynczyk, K. A. Wilk, M. Samoc, and M. Nyk, Chem. Phys. 456, 93 (2015).
24.M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, Science 281, 1653 (1998).
25.D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300, 1434 (2003).

Data & Media loading...


Article metrics loading...



Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photonabsorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photonabsorption cross section σ for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σΦ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidalquantum dots can be potentially useful for nonlinear bioimaging.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd