Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/12/10.1063/1.4937170
1.
1.J. Locquet, J. Perret, J. Fompeyrine, and E. Mächler, Nature 394, 453 (1998).
http://dx.doi.org/10.1038/28810
2.
2.D. Lee, A. Grimaud, E. J. Crumlin, K. Mezghani, M. A. Habib, Z. Feng, W. T. Hong, M. D. Biegalski, H. M. Christen, and Y. Shao-horn, J. Phys. Chem. C 117, 18789 (2013).
http://dx.doi.org/10.1021/jp404121p
3.
3.M. Burriel, J. Santiso, M. D. Rossell, G. Van Tendeloo, A. Figueras, and G. Garcia, J. Phys. Chem. C 112, 10982 (2008).
http://dx.doi.org/10.1021/jp7101622
4.
4.J. Nichols, J. Terzic, E. G. Bittle, O. B. Korneta, L. E. De Long, J. W. Brill, and G. Cao, Appl. Phys. Lett. 102, 141908 (2013).
http://dx.doi.org/10.1063/1.4801877
5.
5.M. Burriel, G. Garcia, J. Santiso, J. A. Kilner, R. J. Chater, and S. J. Skinner, J. Mater. Chem. 18, 416 (2008).
http://dx.doi.org/10.1039/B711341B
6.
6.S. L. Bud’ko, J. Guimpel, O. Nakamura, M. B. Maple, and I. K. Schuller, Phys. Rev. B 46, 1257 (1992).
http://dx.doi.org/10.1103/physrevb.46.1257
7.
7.F. Gugenberger, C. Meingast, G. Roth, K. Grube, V. Breit, and H. Wiihl, Phys. Rev. B 49, 13137 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.13137
8.
8.M. Nohara, T. Suzuki, Y. Maeno, T. Fujita, I. Tanaka, and H. Kojima, Phys. Rev. B 52, 570 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.570
9.
9.H. Sato and M. Naito, Phys. C 274, 221 (1997).
http://dx.doi.org/10.1016/S0921-4534(96)00675-2
10.
10.I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, and I. Sveklo, Phys. Rev. Lett. 89, 107001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.107001
11.
11.H. Sato, A. Tsukada, M. Naito, and A. Matsuda, Phys. Rev. B 61, 12447 (2000).
http://dx.doi.org/10.1103/physrevb.61.12447
12.
12.E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. 87, 047003 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.047003
13.
13.O. Chmaissem, J. Jorgensen, and S. Short, Nature 397, 45 (1999).
http://dx.doi.org/10.1038/16209
14.
14.H. Sato, Phys. C 468, 991 (2008).
http://dx.doi.org/10.1016/j.physc.2008.05.001
15.
15.H. L. Kao, R. M. Fleming, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 59, 2748 (1991).
http://dx.doi.org/10.1063/1.105876
16.
16.M. Z. Cieplak, M. Berkowski, S. Guha, E. Cheng, A. S. Vagelos, D. J. Rabinowitz, B. Wu, I. E. Trofimov, and P. Lindenfeld, Appl. Phys. Lett. 65, 3383 (1994).
http://dx.doi.org/10.1063/1.112399
17.
17.I. Zaytseva, M. Z. Cieplak, A. Abal, M. Berkowski, V. Domukhovski, W. Paszkowicz, and A. Shalimov, Acta Phys. Pol., A 111, 185 (2007).
18.
18.J. Tarascon, L. Greene, and W. McKinnon, Science 235, 1373 (1987).
http://dx.doi.org/10.1126/science.235.4794.1373
19.
19.M. W. Shafer, T. Penney, and B. L. Olson, Phys. Rev. B 36, 4047 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.4047
20.
20.T. L. Meyer, L. Jiang, J. Lee, M. Yoon, J. W. Freeland, J. H. Jang, D. S. Aidhy, A. Borisevich, M. Chisholm, T. Egami, and H. N. Lee, e-print arXiv:1508.06971 (2015).
21.
21.U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, and N. A. Spaldin, Phys. Rev. B 88, 054111 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.054111
22.
22.R. J. Cava, A. Santoro, D. W. Johnson, and W. W. Rhodes, Phys. Rev. B 35, 6716 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.6716
23.
23.M. Foerster, M. Iliev, N. Dix, X. Martí, M. Barchuk, F. Sánchez, and J. Fontcuberta, Adv. Funct. Mater. 22, 4344 (2012).
http://dx.doi.org/10.1002/adfm.201200257
24.
24.F. Nakamura, T. Goko, J. Hori, Y. Uno, N. Kikugawa, and T. Fujita, Phys. Rev. B 61, 107 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.107
25.
25.C. Solís, M. D. Rossell, G. Garcia, G. Van Tendeloo, and J. Santiso, Adv. Funct. Mater. 18, 785 (2008).
http://dx.doi.org/10.1002/adfm.200701011
26.
26.D. Toyota, I. Ohkubo, H. Kumigashira, M. Oshima, T. Ohnishi, M. Lippmaa, M. Takizawa, A. Fujimori, K. Ono, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett. 87, 162508 (2005).
http://dx.doi.org/10.1063/1.2108123
27.
27.J. Son, J. M. LeBeau, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 97, 202109 (2010).
http://dx.doi.org/10.1063/1.3511738
28.
28.B. Kim, D. Kwon, J. H. Song, Y. Hikita, B. G. Kim, and H. Y. Hwang, Solid State Commun. 150, 598 (2010).
http://dx.doi.org/10.1016/j.ssc.2009.12.041
29.
29.Y. J. Chang, C. H. Kim, S.-H. Phark, Y. S. Kim, J. Yu, and T. W. Noh, Phys. Rev. Lett. 103, 057201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.057201
30.
30.G. Logvenov, A. Gozar, and I. Bozovic, Science 326, 699 (2009).
http://dx.doi.org/10.1126/science.1178863
31.
31.J. Gazquez, S. Bose, M. Sharma, M. A. Torija, S. J. Pennycook, C. Leighton, and M. Varela, APL Mater. 1, 012105 (2013).
http://dx.doi.org/10.1063/1.4809547
32.
32.D. O. Klenov, W. Donner, B. Foran, and S. Stemmer, Appl. Phys. Lett. 82, 3427 (2003).
http://dx.doi.org/10.1063/1.1575503
33.
33.Y. B. Chen, H. P. Sun, M. B. Katz, X. Q. Pan, K. J. Choi, H. W. Jang, and C. B. Eom, Appl. Phys. Lett. 91, 252906 (2007).
http://dx.doi.org/10.1063/1.2819684
34.
34.J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
http://dx.doi.org/10.1016/s0022-0248(74)80055-2
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/12/10.1063/1.4937170
Loading
/content/aip/journal/aplmater/3/12/10.1063/1.4937170
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/12/10.1063/1.4937170
2015-12-08
2016-09-27

Abstract

We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial LaSrCuOfilmsgrown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in LaSrCuOfilms is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ∼0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/12/1.4937170.html;jsessionid=b0xu1-2iz35DIQnNAwthqgas.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/12/10.1063/1.4937170&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/12/10.1063/1.4937170&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/12/10.1063/1.4937170'
Top,Right1,Right2,Right3,