Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
2.K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
3.D. J. Late, A. Ghosh, B. Chakraborty, A. K. Sood, U. V. Waghmare, and C. N. R. Rao, J. Exp. Nanosci. 6, 641 (2011).
4.D. J. Late, U. Maitra, L. S. Panchakarla, U. V. Waghmare, and C. N. R. Rao, J. Phys.: Condens. Matter 23, 055303 (2011).
5.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
6.M. K. Jana, A. Singh, D. J. Late, C. R. Rajamathi, K. Biswas, C. Felser, U. V. Waghmare, and C. N. R. Rao, J. Phys.: Condens. Matter 27, 285401 (2015).
7.D. J. Late, S. N. Shirodkar, U. V. Waghmare, V. P. Dravid, and C. N. Rao, ChemPhysChem 15, 1592 (2014).
8.M. Thripuranthaka, R. V. Kashid, C. S. Rout, and D. J. Late, Appl. Phys. Lett. 104, 081911 (2014).
9.M. Thripuranthaka and D. J. Late, ACS Appl. Mater. Interfaces 6, 1158 (2014).
10.D. J. Late, B. Liu, H. S. S. Ramakrishna Matte, C. N. R. Rao, and V. P. Dravid, Adv. Funct. Mater. 22, 1894 (2012).
11.R. W. Keyes, Phys. Rev. 92, 580 (1953).
12.F. Xia, H. Wang, and Y. Jia, Nat. Commun. 5, 4458 (2014).
13.Y. Maruyama, S. Suzuki, K. Kobayashi, and S. Tanuma, Physica B+C 105, 99 (1981).
14.Y. Takao and A. Morita, Physica B+C 105, 93 (1981).
15.M. B. Erande, S. R. Suryawanshi, M. A. More, and D. J. Late, Eur. J. Inorg. Chem. 19, 3102 (2015).
16.P. Gargini, Keynote speech at The ConFab (Solid State Technology, 2015), available at
17.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).
18.F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Nat. Photon. 8, 899 (2014).
19.K.-W. Ang, Z.-P. Ling, and J. Zhu, IEEE International Conference on Digital Signal Processing (IEEE, 2015), p. 1223.
20.P. K. Kannan, D. J. Late, H. Morgan, and C. S. Rout, Nanoscale 7, 13293 (2015).
21.N. Haratipour, M. C. Robbins, and S. J. Koester, arXiv:1409.8395v1 (2014).
22.T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, and Y.-Q. Xu, Nanoscale 6, 8978 (2014).
23.M. V. Kamalakar, B. N. Madhushankar, A. Dankert, and S. P. Dash, Small 11, 2209 (2015).
24.Y. Du, H. Liu, Y. Deng, and P. D. Ye, ACS Nano 8, 10035 (2014).
25.J. Na, Y. T. Lee, J. A. Lim, D. K. Hwang, G.-T. Kim, W. K. Choi, and Y.-W. Song, ACS Nano 8, 11753 (2014).
26.S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. 104, 103106 (2014).
27.W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J.-S. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, Nano Lett. 15, 1883 (2015).
28.H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).
29.I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Nano Lett. 7, 2645 (2007).
30.S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, J. Phys. Chem. C. 117, 9042 (2013).
31.D. J. Late, ACS Appl. Mater. Interfaces 7, 5857 (2015).
32.S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, and Y. Lu, ACS Nano 8, 9590 (2014).
33.A. Favron, E. Gaufrès, F. Fossard, P. L. Lévesque, A.-L. Phaneuf-L’Heureux, N. Y.-W. Tang, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, Nat. Mater. 14, 826 (2015).
34.R. Fei and L. Yang, Appl. Phys. Lett. 105, 083120 (2014).
35.E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
36.V. V. Kulish, O. I. Malyi, C. Persson, and P. Wu, Phys. Chem. Chem. Phys. 17, 992 (2015).
37.M. Cho, J. Park, H. B. Park, C. S. Hwang, J. Jeong, K. S. Hyun, Y.-W. Kim, C.-B. Oh, and H.-S. Kang, Appl. Phys. Lett. 81, 3630 (2002).
38.B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, Appl. Phys. Lett. 76, 1926 (2000).
39.M. R. Laskar, L. Ma, S. Kannappan, P. S. Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, Appl. Phys. Lett. 102, 252108 (2013).
40.J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. K. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Nano Lett. 14, 6964 (2014).

Data & Media loading...


Article metrics loading...



Two-dimensional phosphorene is a promising channel material for next generation transistor applications due to its superior carrier transport property. Here, we report the influence of thermal effects on the Raman phonon of few-layer phosphorene formed on hafnium-dioxide (HfO) high-dielectric. When annealed at elevated temperatures (up to 200 °C), the phosphorene film was found to exhibit a blue shift in both the out-of-plane (A1) and in-plane (B and A2) phonon modes as a result of compressive strain effect. This is attributed to the out-diffusion of hafnium (Hf) atoms from the underlying HfOdielectric, which compresses the phosphorene in both the zigzag and armchair directions. With a further increase in thermal energy beyond 250 °C, strain relaxation within phosphorene eventually took place. When this happens, the phosphorene was unable to retain its intrinsic crystallinity prior to annealing, as evident from the broadening of full-width at half maximum of the Raman phonon. These results provide an important insight into the impact of thermal effects on the structural integrity of phosphorene when integrated with high- gate dielectric.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd