Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. Yang, C. Y. Ko, and S. Ramanathan, in Annual Review of Materials Research, edited byD. R. Clarke and P. Fratzl (Annual Reviews, Palo Alto, 2011), Vol. 41, pp. 337367.
2.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70(4), 10391263 (1998).
3.E. Dagotto, Science 309(5732), 257262 (2005). 1107559
4.D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83(2), 471541 (2011).
5.J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, Science 339(6126), 14021405 (2013).
6.V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhacs, M. Chaker, and B. J. Siwick, Science 346(6208), 445448 (2014).
7.M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318(5857), 17501753 (2007).
8.P. Baum, D. S. Yang, and A. H. Zewail, Science 318(5851), 788792 (2007).
9.T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325(5947), 15181521 (2009).
10.M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature 487(7408), 459462 (2012).
11.N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Durr, M. G. Samant, and S. S. P. Parkin, Nat. Phys. 9(10), 661666 (2013).
12.J. D. Budai, J. W. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. Mcqueeney, and O. Delaire, Nature 515(7528), 535539 (2014).
13.M. K. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. B. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, Nature 487(7407), 345348 (2012).
14.J. H. Park, J. M. Coy, T. S. Kasirga, C. M. Huang, Z. Y. Fei, S. Hunter, and D. H. Cobden, Nature 500(7463), 431434 (2013).
15.S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, Appl. Phys. Lett. 105(22), 4 (2014).
16.J. B. Goodenough, J. Solid State Chem. 3(4), 490500 (1971).
17.A. Zylbersztejn and N. F. Mott, Phys. Rev. B 11(11), 43834395 (1975).
18.J. B. Goodenough, Czech J. Phys. 17(4), 304336 (1967).
19.R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72(21), 33893392 (1994).
20.T. M. Rice, H. Launois, and J. P. Pouget, Phys. Rev. Lett. 73(22), 3042 (1994).
21.S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, Phys. Rev. Lett. 105(5), 4 (2010).
22.E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, Phys. Rev. Lett. 98(19), 4 (2007).
23.H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, Phys. Rev. Lett. 97(26), 4 (2006).
24.C. Weber, D. D. O’Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 5 (2012).
25.A. S. Belozerov, M. A. Korotin, V. I. Anisimov, and A. I. Poteryaev, Phys. Rev. B 85(4), 10 (2012).
26.D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stahler, Phys. Rev. Lett. 113(21), 5 (2014).
27.A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. B 70(16), 4 (2004).
28.K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 3 (2010).
29.E. Sakai, K. Yoshimatsu, K. Shibuya, H. Kumigashira, E. Ikenaga, M. Kawasaki, Y. Tokura, and M. Oshima, Phys. Rev. B 84(19), 5 (2011).
30.Z. S. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C. Y. Ruan, K. Wang, and J. Q. Wu, Phys. Rev. Lett. 109(16), 5 (2012).
31.J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, Phys. Rev. Lett. 113(21), 5 (2014).
32.S. Lee, I. N. Ivanov, J. K. Keum, and H. N. Lee, e-print arXiv:1509.00525 [cond-mat.mtrl-sci] (2015).
33.C. Leroux, G. Nihoul, and G. Van Tendeloo, Phys. Rev. B 57(9), 51115121 (1998).
34.W. Li, J. R. Dahn, and D. S. Wainwright, Science 264(5162), 11151118 (1994).
35.S. R. Popuri, A. Artemenko, C. Labrugere, M. Miclau, A. Villesuzanne, and M. Pollet, J. Solid State Chem. 213, 7986 (2014).
36.M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H. J. Lin, C. T. Chen, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett. 95(19), 4 (2005).
37.T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schussler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97(11), 4 (2006).
38.N. F. Quackenbush, J. W. Tashman, J. A. Mundy, S. Sallis, H. Paik, R. Misra, J. A. Moyer, J. H. Guo, D. A. Fischer, J. C. Woicik, D. A. Muller, D. G. Schlom, and L. F. J. Piper, Nano Lett. 13(10), 48574861 (2013).
39.L. Whittaker, C. Jaye, Z. G. Fu, D. A. Fischer, and S. Banerjee, J. Am. Chem. Soc. 131(25), 88848894 (2009).
40.D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, Phys. Rev. B 77(19), 5 (2008).
41.D. Ruzmetov, S. D. Senanayake, and S. Ramanathan, Phys. Rev. B 75(19), 7 (2007).
42.A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. Lett. 95(6), 4 (2005).
43.X. G. Tan, T. Yao, R. Long, Z. H. Sun, Y. J. Feng, H. Cheng, X. Yuan, W. Q. Zhang, Q. H. Liu, C. Z. Wu, Y. Xie, and S. Q. Wei, Sci. Rep. 2, 6 (2012).
44.M. Abbate, F. M. F. Degroot, J. C. Fuggle, Y. J. Ma, C. T. Chen, F. Sette, A. Fujimori, Y. Ueda, and K. Kosuge, Phys. Rev. B 43(9), 72637267 (1991).
45.J. Laverock, L. F. J. Piper, A. R. H. Preston, B. Chen, J. McNulty, K. E. Smith, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, P. A. Glans, and J. H. Guo, Phys. Rev. B 85(8), 5 (2012).
46.W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison, and H. N. Lee, Nat. Commun. 3, 6 (2012).
47.T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 48(23), 1700617009 (1993).
48.H. B. Zhang, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 111(24), 5 (2013).
49.W. Kohn and L. J. Sham, Phys. Rev. 140(4A), 11331138 (1965).
50.A. D. Becke, J. Chem. Phys. 96(3), 21552160 (1992).
51.G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6(1), 1550 (1996).
52.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13(12), 51885192 (1976).

Data & Media loading...


Article metrics loading...



Determining the origin of the insulating gap in the monoclinic V O(M1) is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O(A) and V O(B) thin films to better understand the insulating phase of VO. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VOpolymorphs. The distinct splitting of the half-filled orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd