Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/12/10.1063/1.4939004
1.
1.Z. Yang, C. Y. Ko, and S. Ramanathan, in Annual Review of Materials Research, edited byD. R. Clarke and P. Fratzl (Annual Reviews, Palo Alto, 2011), Vol. 41, pp. 337367.
2.
2.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70(4), 10391263 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
3.
3.E. Dagotto, Science 309(5732), 257262 (2005).
http://dx.doi.org/10.1126/science. 1107559
4.
4.D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83(2), 471541 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.471
5.
5.J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, Science 339(6126), 14021405 (2013).
http://dx.doi.org/10.1126/science.1230512
6.
6.V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhacs, M. Chaker, and B. J. Siwick, Science 346(6208), 445448 (2014).
http://dx.doi.org/10.1126/science.1253779
7.
7.M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318(5857), 17501753 (2007).
http://dx.doi.org/10.1126/science.1150124
8.
8.P. Baum, D. S. Yang, and A. H. Zewail, Science 318(5851), 788792 (2007).
http://dx.doi.org/10.1126/science.1147724
9.
9.T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, Science 325(5947), 15181521 (2009).
http://dx.doi.org/10.1126/science.1176580
10.
10.M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature 487(7408), 459462 (2012).
http://dx.doi.org/10.1038/nature11296
11.
11.N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Durr, M. G. Samant, and S. S. P. Parkin, Nat. Phys. 9(10), 661666 (2013).
http://dx.doi.org/10.1038/nphys2733
12.
12.J. D. Budai, J. W. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, L. A. Boatner, R. J. Mcqueeney, and O. Delaire, Nature 515(7528), 535539 (2014).
http://dx.doi.org/10.1038/nature13865
13.
13.M. K. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. B. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, Nature 487(7407), 345348 (2012).
http://dx.doi.org/10.1038/nature11231
14.
14.J. H. Park, J. M. Coy, T. S. Kasirga, C. M. Huang, Z. Y. Fei, S. Hunter, and D. H. Cobden, Nature 500(7463), 431434 (2013).
http://dx.doi.org/10.1038/nature12425
15.
15.S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, Appl. Phys. Lett. 105(22), 4 (2014).
http://dx.doi.org/10.1063/1.4903348
16.
16.J. B. Goodenough, J. Solid State Chem. 3(4), 490500 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
17.
17.A. Zylbersztejn and N. F. Mott, Phys. Rev. B 11(11), 43834395 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.4383
18.
18.J. B. Goodenough, Czech J. Phys. 17(4), 304336 (1967).
http://dx.doi.org/10.1007/BF01691621
19.
19.R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72(21), 33893392 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3389
20.
20.T. M. Rice, H. Launois, and J. P. Pouget, Phys. Rev. Lett. 73(22), 3042 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3042
21.
21.S. A. Corr, D. P. Shoemaker, B. C. Melot, and R. Seshadri, Phys. Rev. Lett. 105(5), 4 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.056404
22.
22.E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, Phys. Rev. Lett. 98(19), 4 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196406
23.
23.H. T. Kim, Y. W. Lee, B. J. Kim, B. G. Chae, S. J. Yun, K. Y. Kang, K. J. Han, K. J. Yee, and Y. S. Lim, Phys. Rev. Lett. 97(26), 4 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266401
24.
24.C. Weber, D. D. O’Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 5 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.256402
25.
25.A. S. Belozerov, M. A. Korotin, V. I. Anisimov, and A. I. Poteryaev, Phys. Rev. B 85(4), 10 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045109
26.
26.D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, A. Rubio, M. Wolf, and J. Stahler, Phys. Rev. Lett. 113(21), 5 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.216401
27.
27.A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. B 70(16), 4 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161102
28.
28.K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 3 (2010).
http://dx.doi.org/10.1063/1.3291053
29.
29.E. Sakai, K. Yoshimatsu, K. Shibuya, H. Kumigashira, E. Ikenaga, M. Kawasaki, Y. Tokura, and M. Oshima, Phys. Rev. B 84(19), 5 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195132
30.
30.Z. S. Tao, T. R. T. Han, S. D. Mahanti, P. M. Duxbury, F. Yuan, C. Y. Ruan, K. Wang, and J. Q. Wu, Phys. Rev. Lett. 109(16), 5 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.166406
31.
31.J. Laverock, S. Kittiwatanakul, A. A. Zakharov, Y. R. Niu, B. Chen, S. A. Wolf, J. W. Lu, and K. E. Smith, Phys. Rev. Lett. 113(21), 5 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.216402
32.
32.S. Lee, I. N. Ivanov, J. K. Keum, and H. N. Lee, e-print arXiv:1509.00525 [cond-mat.mtrl-sci] (2015).
33.
33.C. Leroux, G. Nihoul, and G. Van Tendeloo, Phys. Rev. B 57(9), 51115121 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.5111
34.
34.W. Li, J. R. Dahn, and D. S. Wainwright, Science 264(5162), 11151118 (1994).
http://dx.doi.org/10.1126/science.264.5162.1115
35.
35.S. R. Popuri, A. Artemenko, C. Labrugere, M. Miclau, A. Villesuzanne, and M. Pollet, J. Solid State Chem. 213, 7986 (2014).
http://dx.doi.org/10.1016/j.jssc.2014.01.037
36.
36.M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H. J. Lin, C. T. Chen, D. I. Khomskii, and L. H. Tjeng, Phys. Rev. Lett. 95(19), 4 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.196404
37.
37.T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schussler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97(11), 4 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.116402
38.
38.N. F. Quackenbush, J. W. Tashman, J. A. Mundy, S. Sallis, H. Paik, R. Misra, J. A. Moyer, J. H. Guo, D. A. Fischer, J. C. Woicik, D. A. Muller, D. G. Schlom, and L. F. J. Piper, Nano Lett. 13(10), 48574861 (2013).
http://dx.doi.org/10.1021/nl402716d
39.
39.L. Whittaker, C. Jaye, Z. G. Fu, D. A. Fischer, and S. Banerjee, J. Am. Chem. Soc. 131(25), 88848894 (2009).
http://dx.doi.org/10.1021/ja902054w
40.
40.D. Ruzmetov, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, Phys. Rev. B 77(19), 5 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195442
41.
41.D. Ruzmetov, S. D. Senanayake, and S. Ramanathan, Phys. Rev. B 75(19), 7 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195102
42.
42.A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, Phys. Rev. Lett. 95(6), 4 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.067405
43.
43.X. G. Tan, T. Yao, R. Long, Z. H. Sun, Y. J. Feng, H. Cheng, X. Yuan, W. Q. Zhang, Q. H. Liu, C. Z. Wu, Y. Xie, and S. Q. Wei, Sci. Rep. 2, 6 (2012).
http://dx.doi.org/10.1038/srep00466
44.
44.M. Abbate, F. M. F. Degroot, J. C. Fuggle, Y. J. Ma, C. T. Chen, F. Sette, A. Fujimori, Y. Ueda, and K. Kosuge, Phys. Rev. B 43(9), 72637267 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.7263
45.
45.J. Laverock, L. F. J. Piper, A. R. H. Preston, B. Chen, J. McNulty, K. E. Smith, S. Kittiwatanakul, J. W. Lu, S. A. Wolf, P. A. Glans, and J. H. Guo, Phys. Rev. B 85(8), 5 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.081104
46.
46.W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, G. E. Jellison, and H. N. Lee, Nat. Commun. 3, 6 (2012).
http://dx.doi.org/10.1038/ncomms1690
47.
47.T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 48(23), 1700617009 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.17006
48.
48.H. B. Zhang, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 111(24), 5 (2013).
http://dx.doi.org/10.1103/physrevlett.111.246402
49.
49.W. Kohn and L. J. Sham, Phys. Rev. 140(4A), 11331138 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
50.
50.A. D. Becke, J. Chem. Phys. 96(3), 21552160 (1992).
http://dx.doi.org/10.1063/1.462066
51.
51.G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6(1), 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
52.
52.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13(12), 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/12/10.1063/1.4939004
Loading
/content/aip/journal/aplmater/3/12/10.1063/1.4939004
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/12/10.1063/1.4939004
2015-12-24
2016-09-27

Abstract

Determining the origin of the insulating gap in the monoclinic V O(M1) is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O(A) and V O(B) thin films to better understand the insulating phase of VO. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VOpolymorphs. The distinct splitting of the half-filled orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/12/1.4939004.html;jsessionid=FK2r7R6kB8Rn0yPgu9v7R5gW.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/12/10.1063/1.4939004&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/12/10.1063/1.4939004&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/12/10.1063/1.4939004'
Top,Right1,Right2,Right3,