Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/2/10.1063/1.4906878
1.
1.R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
http://dx.doi.org/10.1038/417156a
2.
2.B. Ferguson and X. C. Zhang, Nat. Mater. 1, 2633 (2002).
http://dx.doi.org/10.1038/nmat708
3.
3.M. Eisele, T. L. Cocker, M. A. Huber, M. Plankl, L. Viti, D. Ercolani, L. Sorba, M. S. Vitiello, and R. Huber, Nat. Photonics 8, 841845 (2014).
http://dx.doi.org/10.1038/nphoton.2014.225
4.
4.C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, Nat. Photonics 8, 605609 (2014).
http://dx.doi.org/10.1038/nphoton.2014.139
5.
5.L. Masini, S. Meucci, J. Xu, R. Degl’ Innocenti, F. Castellano, H. E. Beere, D. Ritchie, D. Balduzzi, R. Puglisi, A. Galli, F. Beltram, M. S. Vitiello, M. Cecchini, and A. Tredicucci, Laser Photonics Rev. 8, 734742 (2014).
http://dx.doi.org/10.1002/lpor.201300224
6.
6.F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, M. S. Vitiello, and G. Scamarcio, Appl. Phys. Lett. 104, 041112 (2014).
http://dx.doi.org/10.1063/1.4863671
7.
7.L. J. Xie, Y. Yao, and Y. B. Ying, Appl. Spectrosc. Rev. 48, 448461 (2014).
http://dx.doi.org/10.1080/05704928.2013.847845
8.
8.O. Mitrofanov, W. L. Yu, R. J. Thompson, Y. X. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. G. Jiang, Appl. Phys. Lett. 103, 111105 (2013).
http://dx.doi.org/10.1063/1.4820811
9.
9.M. Tonouchi, Nat photonics 1, 97105 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
10.
10.S. Blin, L. Tohme, D. Coquillat, S. Horiguchi, Y. Minamikata, S. Hisatake, P. Nouvel, T. Cohen, A. Penarier, F. Cano, L. Varani, W. Knap, and T. Nagatsuma, J. Commun. Networks 15, 559 (2013).
http://dx.doi.org/10.1109/jcn.2013.000104
11.
11.L. Tohmé, S. Blin, G. Ducournau, P. Nouvel, D. Coquillat, S. Hisatake, T. Nagatsuma, A. Pénarier, L. Varani, W. Knap, and J.-F. Lampin, Electron. Lett. 50, 323 (2014).
http://dx.doi.org/10.1049/el.2013.3702
12.
12.F. Sizov and A. Rogalski, Prog. Quantum Electron. 34, 278 (2010).
http://dx.doi.org/10.1016/j.pquantelec.2010.06.002
13.
13.P. H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
14.
14.W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusius, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, Int. J. Infrared Millimeter Waves 30, 1319 (2009).
http://dx.doi.org/10.1007/s10762-009-9564-9
15.
15.A. Lisauskas, S. Boppel, J. Matukas, V. Palenskis, L. Minkevicius, G. Valusis, P. Haring-Bolivar, and H. G. Roskos, Appl. Phys.Lett. 103, 153505 (2013).
http://dx.doi.org/10.1063/1.4802208
16.
16.E. Ojefors, U. R. Pfeiffer, A. Lisauskas, and H. G. Roskos, IEEE J. Solid-State Circuits 44, 19681976 (2009).
http://dx.doi.org/10.1109/JSSC.2009.2021911
17.
17.X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, and J. Kono, Nano Lett. 14, 39533958 (2014).
http://dx.doi.org/10.1021/nl5012678
18.
18.L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Nat. Mater. 11, 865871 (2012).
http://dx.doi.org/10.1038/nmat3417
19.
19.D. Spirito, D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, Appl. Phys. Lett. 104, 061111 (2014).
http://dx.doi.org/10.1063/1.4864082
20.
20.F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).
http://dx.doi.org/10.1038/nnano.2014.215
21.
21.M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, Nano Lett. 12, 96 (2012).
http://dx.doi.org/10.1021/nl2030486
22.
22.M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, Appl. Phys. Lett. 100, 241101 (2012).
http://dx.doi.org/10.1063/1.4724309
23.
23.M. Ravaro, M. Locatelli, L. Viti, D. Ercolani, L. Consolino, S. Bartalini, L. Sorba, M. S. Vitiello, and P. De Natale, Appl. Phys. Lett. 104, 083116 (2014).
http://dx.doi.org/10.1063/1.4867074
24.
24.L. Romeo, D. Coquillat, M. Pea, D. Ercolani, F. Beltram, L. Sorba, W. Knap, A. Tredicucci, and M. S. Vitiello, Nanotechnology 24, 214005 (2013).
http://dx.doi.org/10.1088/0957-4484/24/21/214005
25.
25.L. Viti, D. Coquillat, D. Ercolani, L. Sorba, W. Knap, and M. S. Vitiello, Opt. Express 22, 8996 (2014).
http://dx.doi.org/10.1364/OE.22.008996
26.
26.M. Dyakonov and M. Shur, IEEE Trans. Electron Devices 43, 380387 (1996).
http://dx.doi.org/10.1109/16.485650
27.
27.Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9(10), 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
28.
28.L. Viti, M. S. Vitiello, D. Ercolani, L. Sorba, and A. Tredicucci, Nanoscale Res. Lett. 7, 159 (2012).
http://dx.doi.org/10.1186/1556-276x-7-159
29.
29.D. Vashaee, A. Shakouri, J. Goldberger, T. Kuykendall, P. Pauzauskie, and P. Yang, J. Appl. Phys. 99, 054310 (2006).
http://dx.doi.org/10.1063/1.2168229
30.
30.S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, 1995), Chap. 1.
31.
31.L. Romeo, D. Coquillat, E. Husanu, D. Ercolani, A. Tredicucci, F. Beltram, L. Sorba, W. Knap, and M. S. Vitiello, Appl. Phys. Lett. 105, 231112 (2014).
http://dx.doi.org/10.1063/1.4903473
32.
32.P. Caroff, J. B. Wagner, K. A. Dick, H. A. Nilsson, M. Jeppsson, K. Deppert, L. Samuelson, L. R. Wallenberg, and L.-E. Wernersson, Small 4, 878 (2008).
http://dx.doi.org/10.1002/smll.200700892
33.
33.D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, F. Beltram, and L. Sorba, Nanotechnology 20, 505605 (2009).
http://dx.doi.org/10.1088/0957-4484/20/50/505605
34.
34.A. Pitanti, D. Coquillat, D. Ercolani, L. Sorba, F. Teppe, W. Knap, G. De Simoni, F. Beltram, A. Tredicucci, and M. S. Vitiello, Appl. Phys. Lett. 101, 141103 (2012).
http://dx.doi.org/10.1063/1.4757005
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/2/10.1063/1.4906878
Loading
/content/aip/journal/aplmater/3/2/10.1063/1.4906878
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/2/10.1063/1.4906878
2015-02-17
2016-05-31

Abstract

One-dimensional (1D) nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW)-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz), thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of -related parameters (NW doping concentration, geometry, and/or material choice) and -related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/2/1.4906878.html;jsessionid=+Z5RdYiv4Tm9mOARr7B0fJrP.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/2/10.1063/1.4906878&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/2/10.1063/1.4906878&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/2/10.1063/1.4906878'
Right1,Right2,Right3,