Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.I. J. Kramer and E. H. Sargent, Chem. Rev. 114, 863 (2014).
2.J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. F. Aram, J. B. Asbury, E. H. Sargent, M. Furukawa, A. Fischer, and A. Amassian, Nat. Mater. 10, 765 (2011).
3.A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, Nat. Nanotechnol. 7, 577 (2012).
4.C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nat. Mater. 13, 796 (2014).
5.J. P. Clifford, K. W. Johnston, L. Levina, and E. H. Sargent, Appl. Phys. Lett. 91, 253117 (2007).
6.J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, ACS Nano 2, 271 (2008).
7.G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, ACS Nano 2, 833 (2008).
8.P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulović, ACS Nano 8, 5863 (2014).
9.Z. Ning, Y. Ren, S. Hoogland, O. Voznyy, L. Levina, P. Stadler, X. Lan, E. H. Sargent, and D. Zhitomirsky, Adv. Mater. 24, 6295 (2012).
10.D. Zhitomirsky, M. Furukawa, J. Tang, P. Stadler, S. Hoogland, O. Voznyy, H. Liu, and E. H. Sargent, Adv. Mater. 24, 6181 (2012).
11.S. Kim, J. Noh, H. Choi, H. Ha, J. H. Song, H. C. Shim, J. Jang, M. C. Beard, and S. Jeong, J. Phys. Chem. Lett. 5, 4002 (2014).
12.W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W.-K. Koh, H. Luo, V. I. Klimov, and J. M. Pietryga, J. Am. Chem. Soc. 134, 20160 (2012).
13.M. A. Hines and G. D. Scholes, Adv. Mater. 15, 1844 (2003).
14.See supplementary material at for material synthesis and characterization, Figure S1; film characterization, Figure S2; fitting of ellipsometry data; ligand exchange and infrared absorption, Figure S3; and details on the assessment of the change in open-circuit voltage.[Supplementary Material]
15.K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, and M. A. Loi, Appl. Phys. Lett. 97, 203501 (2010).
16.J. Tang, X. Wang, L. Brzozowski, D. A. R. Barkhouse, R. Debnath, L. Levina, and E. H. Sargent, Adv. Mater. 22, 1398 (2010).
17.D. Bozyigit and V. Wood, J. Mater. Chem. C 2, 3172 (2014).
18.C. Gähwiller and G. Harbeke, Phys. Rev. 185, 1141 (1969).
19.W. W. Scanlon, J. Phys Chem. Solids 8, 423 (1959).
20.L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, J. Am. Chem. Soc. 128, 10337 (2006).
21.T. Walter, R. Herberholz, C. Müller, and H. W. Schock, J. Appl. Phys. 80, 4411 (1996).
22.D. Bozyigit and V. Wood, preprint arXiv: 1412.4087 (2014).
23.D. Bozyigit, S. Volk, O. Yarema, and V. Wood, Nano Lett. 13, 5284 (2013).
24.I. Mora-Sero, L. Bertoluzzi, V. Gonzalez-Pedro, S. Gimenez, F. Fabregat-Santiago, K. W. Kemp, E. H. Sargent, and J. Bisquert, Nat. Commun. 4, 2272 (2013).
25.D. Bozyigit, W. M. Lin, N. Yazdani, O. Yarema, and V. Wood, Nat. Commun. 6, 6180 (2015).
26.A. Shabaev, A. L. Efros, and A. L. Efros, Nano Lett. 13, 5454 (2013).
27.D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and E. H. Sargent, Nat. Commun. 5, 3803 (2014).
28.W. Yoon, J. E. Boercker, M. P. Lumb, D. Placencia, E. E. Foos, and J. G. Tischler, Sci. Rep. 3, 2225 (2013).

Data & Media loading...


Article metrics loading...



Molecular- and salt-based chemical treatments are believed to passivate electronic trap states in nanocrystal-based semiconductors, which are considered promising for solar cells but suffer from high carrier recombination. Here, we compare the chemical, optical, and electronic properties of PbS nanocrystal-based solids treated with molecular iodine and tetrabutylammonium iodide. Surprisingly, both treatments increase—rather than decrease—the number density of trap states; however, the increase does not directly influence solar cell performance. We explain the origins of the observed impact on solar cell performance and the potential in using different chemical treatments to tune charge carrier dynamics in nanocrystal-solids.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd