Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L. Franks, and R. B. James, Mater. Sci. Eng. R: Rep. 32, 103 (2001).
2.G. Yang and R. B. James, Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications (Elsevier, 2009), p. 214.
3.P. Capper, Narrow Gap Cadmium Based Compounds (INSPEC, London, UK, 1994).
4.M. Yoshikawa, K. Maruyama, T. Saito, T. Maekawa, and H. Takigawa, J. Vac. Sci. Technol., A 5, 3052 (1987).
5.J. M. Peterson, J. A. Franklin, M. Reddy, S. M. Johnson, E. Smith, W. A. Radford, and I. Kasai, J. Electron. Mater. 35, 1283 (2006).
6.A. Rogalski, Infrared Phys. Technol. 54, 136 (2011).
7.N. Zhang, A. Yeckel, A. Burger, Y. Cui, K. G. Lynn, and J. J. Derby, J. Cryst. Growth 325, 10 (2011).
8.P. Fougeres, L. Chibani, M. Hage-Ali, J. M. Koebel, G. Hennard, A. Zumbiehl, P. Siffert, and M. Benkaddour, J. Cryst. Growth 197, 641 (1999).
9.A. E. Bolotnikov, S. Babalola, G. S. Camarda, Y. Cui, S. U. Egarievwe, R. Hawrami, A. Hossain, G. Yang, and R. B. James, IEEE Trans.Nucl. Sci. 57, 910 (2010).
10.A. E. Bolotnikov, G. S. Camarda, Y. Cui, G. Yang, A. Hossain, K. Kim, and R. B. James, J. Cryst. Growth 379, 46 (2013).
11.G. Yang, A. E. Bolotnikov, P. M. Fochuk, O. Kopach, J. Franc, E. Belas, K. H. Kim, G. S. Camarda, A. Hossain, Y. Cui, A. L. Adams, A. Radja, R. Pinder, and R. B. James, J. Cryst. Growth 379, 16 (2013).
12.C. J. Johnson, Proc. SPIE 1106, 56 (1989).
13.K. H. Kim, J. K. Hong, and S. U. Kim, J. Cryst. Growth 310, 91 (2008).
14.P. Rudolph, Prog. Cryst. Growth Charact. Mater. 29, 275 (1994).
15.M. Fiederle, D. Ebling, C. Eiche, D. M. Hofmann, M. Salk, W. Stadler, K. W. Benz, and B. K. Meyer, J. Cryst. Growth 138, 529 (1994).
16.A. E. Bolotnikov, G. S. Camarda, G. A. Carini, Y. Cui, K. T. Kohman, L. Li, M. B. Salomon, and R. B. James, IEEE Trans. Nucl. Sci. 54, 821 (2007).
17.C. Peng, N. Chen, F. Gao, X. Zhang, C. Chen, J. Wu, and Y. Yu, Appl. Phys. Lett. 88, 242108 (2006).

Data & Media loading...


Article metrics loading...



We obtained high-quality CdTeSe (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd Zn Te (CdZnTe or CZT).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd