Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, Prog. Solid State Chem. 15, 55 (1983).
2.H. S. Horowitz, J. M. Longo, and H. H. Horowitz, J. Electrochem. Soc. 130, 1851 (1983).
3.H. L. Tuller, Solid State Ionics 52, 135 (1992).
4.B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. Yeo, S. M. Haile, J. K. Stalick, and J. D. Jorgensen, Solid State Ionics 129, 111 (2000).
5.A. Jaiswal and E. D. Wachsman, J. Electrochem. Soc. 152, A787 (2005).
6.G. Ehora, S. Daviero-Minaud, M. C. Steil, L. Gengembre, M. Frere, S. Bellayer, and O. Mentre, Chem. Mater. 20, 7425 (2008).
7.R. Martínez-Coronado, J. Alonso, V. Cascos, and M. Fernández-Díaz, J. Power Sources 247, 876 (2014).
8.C. Roychowdhury, F. Matsumoto, P. F. Mutolo, H. D. Abruna, and F. J. DiSalvo, Chem. Mater. 17, 5871 (2005).
9.N. K. Beck, B. Steiger, G. G. Scherer, and A. Wokaun, Fuel Cells 6, 26 (2006).
10.G. J. la O, S. J. Ahn, E. Crumlin, Y. Orikasa, M. D. Biegalski, H. M. Christen, and Y. Shao-Horn, Angew. Chem., Int. Ed. 49, 5344 (2010).
11.J. Liu, G. Collins, M. Liu, C. Chen, J. He, J. Jiang, and E. I. Meletis, Appl. Phys. Lett. 100, 193903 (2012).
12.H. Jeen, Z. Bi, W. S. Choi, M. F. Chisholm, C. A. Bridges, M. P. Paranthaman, and H. N. Lee, Adv. Mater. 25, 6459 (2013).
13.M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, ACS Nano 7, 3276 (2013).
14.B. Yildiz, MRS Bull. 39, 147 (2014).
15.K. A. Stoerzinger, M. Risch, J. Suntivich, W. M. Lu, J. Zhou, M. D. Biegalski, H. M. Christen, Ariando, A. T. Venkatesan, and Y. Shao-Horn, Energy Environ. Sci. 6, 1582 (2013).
16.A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Nat. Chem. 3, 707 (2011).
17.S. V. Kalinin, A. Borisevich, and D. Fong, ACS Nano 6, 10423 (2012).
18.F. Dawood, B. M. Leonard, and R. E. Schaak, Chem. Mater. 19, 4545 (2007).
19.See supplementary material at for a detailed experimental description and Figures S1-S12.[Supplementary Material]
20.J. Switzer, M. G. Shumsky, and E. Bohannan, Science 5412, 293 (1999).
21.D. L. Proffit, G.-R. Bai, D. D. Fong, T. T. Fister, S. O. Hruszkewycz, M. J. Highland, P. M. Baldo, P. H. Fuoss, T. O. Mason, and J. A. Eastman, Appl. Phys. Lett. 96, 021905 (2010).
22.T. Takeyama, N. Takahashib, T. Nakamurab, and S. Itoh, Surf. Coat. Technol. 200, 4797 (2006).
23.M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003).
24.S. Havelia, S. Wang, M. Skowronski, and P. A. Salvador, J. Appl. Phys. 106, 123509 (2009).
25.V. Shelke, V. N. Harshan, S. Kotru, and A. Gupta, J. Appl. Phys. 106, 104114 (2009).
26.L. You, N. T. Chu, K. Yao, L. Chen, and J. Wang, Phys. Rev. B 80, 024105 (2009).
27.Y. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Nat. Mater. 13, 879 (2014).
28.S. Stoughton, M. Showak, Q. Mao, P. Koirala, D. A. Hillsberry, S. Sallis, L. F. Kourkoutis, K. Nguyen, L. F. J. Piper, D. A. Tenne, N. J. Podraza, D. A. Muller, C. Adamo, and D. G. Schlom, APL Mater. 1, 042112 (2013).
29.D. J. Gregg, Z. Zhang, G. J. Thorogood, B. J. Kennedy, J. A. Kimpton, G. J. Griffiths, P. R. Guagliardo, G. R. Lumpkin, and E. R. Vance, J. Nucl. Mater. 452, 474 (2014).
30.D. P. Leusink, F. Coneri, M. Hoek, S. Turner, H. Idrissi, G. V. Tendeloo, and H. Hilgenkamp, APL Mater. 2, 032101 (2014).
31.L. Bovo, X. Moya, D. Prabhakaran, Y.-A. Soh, A. Boothroyd, N. Mathur, G. Aeppli, and S. Bramwell, Nat. Commun. 5, 3439 (2014).

Data & Media loading...


Article metrics loading...



BiPtO pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of BiPtO has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt4+. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial –BiO and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of BiPtO. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the –BiO and BiPtO structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial BiPtO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd