Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/3/10.1063/1.4908103
1.
1.M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, Prog. Solid State Chem. 15, 55 (1983).
http://dx.doi.org/10.1016/0079-6786(83)90001-8
2.
2.H. S. Horowitz, J. M. Longo, and H. H. Horowitz, J. Electrochem. Soc. 130, 1851 (1983).
http://dx.doi.org/10.1149/1.2120111
3.
3.H. L. Tuller, Solid State Ionics 52, 135 (1992).
http://dx.doi.org/10.1016/0167-2738(92)90099-B
4.
4.B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. Yeo, S. M. Haile, J. K. Stalick, and J. D. Jorgensen, Solid State Ionics 129, 111 (2000).
http://dx.doi.org/10.1016/S0167-2738(99)00320-3
5.
5.A. Jaiswal and E. D. Wachsman, J. Electrochem. Soc. 152, A787 (2005).
http://dx.doi.org/10.1149/1.1866093
6.
6.G. Ehora, S. Daviero-Minaud, M. C. Steil, L. Gengembre, M. Frere, S. Bellayer, and O. Mentre, Chem. Mater. 20, 7425 (2008).
http://dx.doi.org/10.1021/cm801942c
7.
7.R. Martínez-Coronado, J. Alonso, V. Cascos, and M. Fernández-Díaz, J. Power Sources 247, 876 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.08.125
8.
8.C. Roychowdhury, F. Matsumoto, P. F. Mutolo, H. D. Abruna, and F. J. DiSalvo, Chem. Mater. 17, 5871 (2005).
http://dx.doi.org/10.1021/cm051886e
9.
9.N. K. Beck, B. Steiger, G. G. Scherer, and A. Wokaun, Fuel Cells 6, 26 (2006).
http://dx.doi.org/10.1002/fuce.200500091
10.
10.G. J. la O, S. J. Ahn, E. Crumlin, Y. Orikasa, M. D. Biegalski, H. M. Christen, and Y. Shao-Horn, Angew. Chem., Int. Ed. 49, 5344 (2010).
http://dx.doi.org/10.1002/anie.201001922
11.
11.J. Liu, G. Collins, M. Liu, C. Chen, J. He, J. Jiang, and E. I. Meletis, Appl. Phys. Lett. 100, 193903 (2012).
http://dx.doi.org/10.1063/1.4712123
12.
12.H. Jeen, Z. Bi, W. S. Choi, M. F. Chisholm, C. A. Bridges, M. P. Paranthaman, and H. N. Lee, Adv. Mater. 25, 6459 (2013).
http://dx.doi.org/10.1002/adma.201302919
13.
13.M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, ACS Nano 7, 3276 (2013).
http://dx.doi.org/10.1021/nn305987x
14.
14.B. Yildiz, MRS Bull. 39, 147 (2014).
http://dx.doi.org/10.1557/mrs.2014.8
15.
15.K. A. Stoerzinger, M. Risch, J. Suntivich, W. M. Lu, J. Zhou, M. D. Biegalski, H. M. Christen, Ariando, A. T. Venkatesan, and Y. Shao-Horn, Energy Environ. Sci. 6, 1582 (2013).
http://dx.doi.org/10.1039/c3ee40321a
16.
16.A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, Nat. Chem. 3, 707 (2011).
http://dx.doi.org/10.1038/nchem.1112
17.
17.S. V. Kalinin, A. Borisevich, and D. Fong, ACS Nano 6, 10423 (2012).
http://dx.doi.org/10.1021/nn304930x
18.
18.F. Dawood, B. M. Leonard, and R. E. Schaak, Chem. Mater. 19, 4545 (2007).
http://dx.doi.org/10.1021/cm071147t
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4908103 for a detailed experimental description and Figures S1-S12.[Supplementary Material]
20.
20.J. Switzer, M. G. Shumsky, and E. Bohannan, Science 5412, 293 (1999).
http://dx.doi.org/10.1126/science.284.5412.293
21.
21.D. L. Proffit, G.-R. Bai, D. D. Fong, T. T. Fister, S. O. Hruszkewycz, M. J. Highland, P. M. Baldo, P. H. Fuoss, T. O. Mason, and J. A. Eastman, Appl. Phys. Lett. 96, 021905 (2010).
http://dx.doi.org/10.1063/1.3291068
22.
22.T. Takeyama, N. Takahashib, T. Nakamurab, and S. Itoh, Surf. Coat. Technol. 200, 4797 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.04.047
23.
23.M. Yashima and D. Ishimura, Chem. Phys. Lett. 378, 395 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.07.014
24.
24.S. Havelia, S. Wang, M. Skowronski, and P. A. Salvador, J. Appl. Phys. 106, 123509 (2009).
http://dx.doi.org/10.1063/1.3266142
25.
25.V. Shelke, V. N. Harshan, S. Kotru, and A. Gupta, J. Appl. Phys. 106, 104114 (2009).
http://dx.doi.org/10.1063/1.3254190
26.
26.L. You, N. T. Chu, K. Yao, L. Chen, and J. Wang, Phys. Rev. B 80, 024105 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.024105
27.
27.Y. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Nat. Mater. 13, 879 (2014).
http://dx.doi.org/10.1038/nmat4039
28.
28.S. Stoughton, M. Showak, Q. Mao, P. Koirala, D. A. Hillsberry, S. Sallis, L. F. Kourkoutis, K. Nguyen, L. F. J. Piper, D. A. Tenne, N. J. Podraza, D. A. Muller, C. Adamo, and D. G. Schlom, APL Mater. 1, 042112 (2013).
http://dx.doi.org/10.1063/1.4824041
29.
29.D. J. Gregg, Z. Zhang, G. J. Thorogood, B. J. Kennedy, J. A. Kimpton, G. J. Griffiths, P. R. Guagliardo, G. R. Lumpkin, and E. R. Vance, J. Nucl. Mater. 452, 474 (2014).
http://dx.doi.org/10.1016/j.jnucmat.2014.05.021
30.
30.D. P. Leusink, F. Coneri, M. Hoek, S. Turner, H. Idrissi, G. V. Tendeloo, and H. Hilgenkamp, APL Mater. 2, 032101 (2014).
http://dx.doi.org/10.1063/1.4867222
31.
31.L. Bovo, X. Moya, D. Prabhakaran, Y.-A. Soh, A. Boothroyd, N. Mathur, G. Aeppli, and S. Bramwell, Nat. Commun. 5, 3439 (2014).
http://dx.doi.org/10.1038/ncomms4439
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/3/10.1063/1.4908103
Loading
/content/aip/journal/aplmater/3/3/10.1063/1.4908103
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/3/10.1063/1.4908103
2015-03-10
2016-05-31

Abstract

BiPtO pyrochlore is thought to be one of the most promising oxide catalysts for application in fuel cell technology. Unfortunately, direct film growth of BiPtO has not yet been achieved, owing to the difficulty of oxidizing platinum metal in the precursor material to Pt4+. In this work, in order to induce oxidation of the platinum, we annealed pulsed laser deposited films consisting of epitaxial –BiO and co-deposited, comparatively disordered platinum. We present synchrotron x-ray diffraction results that show the nonuniform annealed films contain the first epitaxial crystals of BiPtO. We also visualized the pyrochlore structure by scanning transmission electron microscopy, and observed ordered cation vacancies in the epitaxial crystals formed in a bismuth-rich film but not in those formed in a platinum-rich film. The similarity between the –BiO and BiPtO structures appears to facilitate the pyrochlore formation. These results provide the only route to date for the formation of epitaxial BiPtO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/3/1.4908103.html;jsessionid=XiAklKQBozLGRIqO4ZDYs4Jg.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/3/10.1063/1.4908103&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/3/10.1063/1.4908103&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/3/10.1063/1.4908103'
Right1,Right2,Right3,