Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/3/10.1063/1.4913587
1.
1.J. Mannhart and D. G. Schlom, Science 327, 1607-1611 (2010).
http://dx.doi.org/10.1126/science.1181862
2.
2.P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141-165 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
3.
3.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103-113 (2012).
http://dx.doi.org/10.1038/nmat3223
4.
4.S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238-240 (1997).
http://dx.doi.org/10.1126/science.276.5310.238
5.
5.A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature 456, 624-627 (2008).
http://dx.doi.org/10.1038/nature07576
6.
6.H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B.-G. Jeon, K. T. Hong, W.-J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Express 5, 061102 (2012).
http://dx.doi.org/10.1143/apex.5.061102
7.
7.H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B.-G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165205
8.
8.S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
9.
9.H. Mun, U. Kim, H. M. Kim, C. Park, T. H. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2004).
http://dx.doi.org/10.1063/1.4812642
10.
10.H. M. Park, H. J. Lee, S. H. Park, and H. I. Yoo, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 59, i131-i132 (2003).
http://dx.doi.org/10.1107/s0108270103024806
11.
11.U. Kim, C. Park, T. Ha, R. Kim, H. S. Mun, H. M. Kim, H. J. Kim, T. H. Kim, N. Kim, J. Yu, K. H. Kim, J. H. Kim, and K. Char, APL Mater. 2, 056107 (2014).
http://dx.doi.org/10.1063/1.4874895
12.
12.S.-G. Lim, S. Kriventsov, T. N. Jackson, J. H. Haeni, D. G. Schlom, M. Balbashov, R. Uecker, P. Reiche, and G. Lucovsky, J. Appl. Phys. 91, 4500 (2002).
http://dx.doi.org/10.1063/1.1456246
13.
13.J. P. Perdew, Int. J. Quantum Chem. 19, 497 (1985).
http://dx.doi.org/10.1002/qua.560280
14.
14.C.-F. Cao and C.-T. Wu, in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites, edited by J. P. Singhand N. P. Bansal (The American Ceramic Society, Nashville, 2003), Vol. 7.
15.
15.J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/r02
16.
16.C. Park, U. Kim, C. J. Ju, J. S. Park, Y. M. Kim, and K. Char, Appl. Phys. Lett. 105, 203503 (2014).
http://dx.doi.org/10.1063/1.4901963
17.
17.R. F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, Boston, MA, USA, 1996).
18.
18.R. Jany, C. Richter, C. Woltmann, G. Pfanzelt, B. Förg, M. Rommel, T. Reindl, U. Waizmann, J. Weis, J. A. Mundy, D. A. Muller, H. Boschker, and J. Mannhart, Adv. Mater. Interfaces 1, 1300031 (2013).
http://dx.doi.org/10.1002/admi.201300031
19.
19.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, NJ, USA, 2007).
20.
20.K. Nishio, T. Abe, R. Takahashi, and M. Lippmaa, Jpn. J. Appl. Phys.,Part 2 49, 125701 (2010).
http://dx.doi.org/10.1143/JJAP.49.125701
21.
21.K. Shibuya, T. Ohnishi, T. Uozumi, T. Sato, M. Lippmaa, M. Kawasaki, K. Nakajima, T. Chikyow, and H. Koinuma, Appl. Phys. Lett. 88, 212116 (2006).
http://dx.doi.org/10.1063/1.2207502
22.
22.E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, and R. Martins, Phys. Status Solidi RRL 1, R34 (2007).
http://dx.doi.org/10.1002/pssr.200600049
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/3/10.1063/1.4913587
Loading
/content/aip/journal/aplmater/3/3/10.1063/1.4913587
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/3/10.1063/1.4913587
2015-02-25
2016-09-29

Abstract

We demonstrate an all-perovskite transparent heterojunction field effect transistor made of two lattice-matched perovskite oxides: BaSnO and LaInO. We have developed epitaxial LaInO as the gate oxide on top of BaSnO, which were recently reported to possess high thermal stability and electron mobility when doped with La. We measured the dielectric properties of the epitaxial LaInO films, such as the band gap, dielectric constant, and the dielectric breakdown field. Using the LaInO as a gate dielectric and the La-doped BaSnO as a channel layer, we fabricated field effect device structure. The field effect mobility of such device was higher than 90 cm2 V−1 s−1, the on/off ratio was larger than 107, and the subthreshold swing was 0.65 V dec−1. We discuss the possible origins for such device performance and the future directions for further improvement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/3/1.4913587.html;jsessionid=ncB9nw3nGrFdE7RhaSwjDt2v.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/3/10.1063/1.4913587&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/3/10.1063/1.4913587&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/3/10.1063/1.4913587'
Top,Right1,Right2,Right3,