Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008).
2.S. Albert, A. Bengoechea-Encabo, P. Lefebvre, F. Barbagini, M. Sanchez-Garcia, E. Calleja, U. Jahn, and A. Trampert, Appl. Phys. Lett. 100, 231906 (2012).
3.S. Li and A. Waag, J. Appl. Phys. 111, 071101 (2012).
4.A. Bengoechea-Encabo, S. Albert, M. S. García, L. López, S. Estradé, J. Rebled, F. Peiró, G. Nataf, P. de Mierry, J. Zuniga-Perez, and E. Calleja, J. Cryst. Growth 353, 1 (2012).
5.A. Bengoechea-Encabo, S. Albert, J. Zuñiga-Perez, P. de Mierry, A. Trampert, F. Barbagini, M. A. Sanchez-Garcia, and E. Calleja, Appl. Phys. Lett. 103, 241905 (2013).
6.T.-W. Yeh, Y.-T. Lin, L. Stewart, P. Dapkus, R. Sarkissian, J. O’Brien, B. Ahn, and S. Nutt, Nano Lett. 12, 3257 (2012).
7.J. Grandal, M. Wu, X. Kong, E. Dimakis, M. Hanke, L. Geelhaar, H. Riechert, and A. Trampert, Appl. Phys. Lett. 105, 121602 (2014).
8.A. Trampert, X. Kong, E. Luna, J. Grandal, and B. Jenichen, “Microstructure of group III-N nanowires,” in Wide Band Gap Semiconductor Nanowires 1 (John Wiley & Sons, Inc., 2014), pp. 125156.
9.H. Kim, Y. Myung, Y. Cho, D. M. Jang, C. Jung, and J. Park, Nano Lett. 10, 1682 (2010).
10.M. Verheijen, R. E. Algra, M. Borgström, G. Immink, E. Sourty, W. van Enckevort, E. Vlieg, and E. Bakkers, Nano Lett. 7, 3051 (2007).
11.D. Wolf, H. Lichte, G. Pozzi, P. Prete, and N. Lovergine, Appl. Phys. Lett. 98, 264103 (2011).
12.H. Friedrich, M. McCartney, and P. Buseck, Ultramicroscopy 106, 18 (2005).
13.P. Midgley and M. Weyland, Ultramicroscopy 96, 413 (2003).
14.P. Hartel, H. Rose, and C. Dinges, Ultramicroscopy 63, 93 (1996).
15.J. Kremer, D. Mastronarde, and J. McIntosh, J. Struct. Biol. 116, 71 (1996).
16. The selected intensity value can only represent (In,Ga)N with one fixed indium concentration. We have chosen in Fig. 3 a value that visualizes (In,Ga)N with the lowest detectable indium content. Abrupt intensity changes at interfaces in STEM images are slightly smeared out in the reconstructed 3D data set.17 As a consequence, the shape of regions with higher indium content compared to the selected value is, therefore, inherently included in the isosurface representation.
17.J.-J. Fernandez, Micron 43, 1010 (2012).

Data & Media loading...


Article metrics loading...



We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd