Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/3/10.1063/1.4915301
1.
1.S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
http://dx.doi.org/10.1063/1.1581983
2.
2.W. Huang, K. Oe, G. Feng, and M. Yoshimoto, J. Appl. Phys. 98, 053505 (2005).
http://dx.doi.org/10.1063/1.2032618
3.
3.M. Usman, C. A. Broderick, A. Lindsay, and E. P. O’Reilly, Phys. Rev. B 84, 245202 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245202
4.
4.Z. D. Marks, I. W. Haygood, and B. Van Zeghbroeck, IEEE Trans. Electron Devices 60, 200 (2013).
http://dx.doi.org/10.1109/TED.2012.2226592
5.
5.D. Fan, Z. Zeng, X. Hu, V. G. Dorogan, C. Li, M. Benamara, M. E. Hawkridge, Y. I. Mazur, S.–Q. Yu, S. R. Johnson, Z. M. Wang, and G. J. Salamo, Appl. Phys. Lett. 101, 181103 (2012).
http://dx.doi.org/10.1063/1.4764556
6.
6.R. B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).
http://dx.doi.org/10.1063/1.4748172
7.
7.R. D. Richards, F. Bastiman, C. J. Hunter, D. F. Mendes, A. R. Mohmad, J. S. Roberts, and J. P. R. David, J. Cryst. Growth 390, 120 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.12.008
8.
8.X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).
http://dx.doi.org/10.1063/1.2918844
9.
9.A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.–S. Jiang, J. Cryst. Growth 338, 107 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.10.040
10.
10.K. Forghani, A. Anand, L. J. Mawst, and T. F. Kuech, J. Cryst. Growth 380, 23 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.05.033
11.
11.P. Ludewig, Z. L. Bushell, L. Nattermann, N. Knaub, W. Stolz, and K. Volz, J. Cryst. Growth 396, 95-99 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.03.041
12.
12.I. P. Marko, P. Ludewig, Z. L. Bushell, S. R. Jin, K. Hild, Z. Batool, S. Reinhard, L. Nattermann, W. Stolz, K. Volz, and S. J. Sweeney, J. Phys. D: Appl. Phys. 47, 345103 (2014).
http://dx.doi.org/10.1088/0022-3727/47/34/345103
13.
13.P. Ludewig, N. Knaub, W. Stolz, and K. Volz, J. Cryst. Growth 370, 186 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.07.002
14.
14.K. Forghani, Y. Guan, A. W. Wood, A. Anand, S. E. Babcock, L. J. Mawst, and T. F. Kuech, J. Cryst. Growth 395, 38-45 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.03.014
15.
15.Z. L. Bushell, P. Ludewig, N. Knaub, Z. Batool, K. Hild, W. Stolz, S. J. Sweeney, and K. Volz, J. Cryst. Growth 396, 79 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.03.038
16.
16.S. Imhof, A. Thränhardt, A. Chernikov, M. Koch, N. S. Köster, K. Kolata, S. Chatterjee, S. W. Koch, X. Lu, S. R. Johnson, D. A. Beaton, T. Tiedje, and O. Rubel, Appl. Phys. Lett. 96, 131115 (2010).
http://dx.doi.org/10.1063/1.3374884
17.
17.S. Francoeur, S. Tixier, E. Young, T. Tiedje, and A. Mascarenhas, Phys. Rev. B 77, 085209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085209
18.
18.J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen, T. Sajavaara, and M. Guina, J. Appl. Phys. 114, 243504 (2013).
http://dx.doi.org/10.1063/1.4851036
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/3/10.1063/1.4915301
Loading
/content/aip/journal/aplmater/3/3/10.1063/1.4915301
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/3/10.1063/1.4915301
2015-03-20
2016-12-04

Abstract

A set of GaAs Bi/GaAs multilayer quantum-well structures was deposited by metal-organic vapor phase epitaxy at 390 °C and 420 °C. The precursor fluxes were introduced with the intent of growing discrete and compositionally uniform GaAs Bi well and GaAs barrier layers in the epitaxial films. High-resolution high-angle annular-dark-field (or “Z-contrast”) scanning transmission electron microscopy imaging revealed concentration profiles that were periodic in the growth direction, but far more complicated in shape than the intended square wave. The observed composition profiles could explain various reports of physical properties measurements that suggest compositional inhomogeneity in GaAs Bi alloys as they currently are grown.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/3/1.4915301.html;jsessionid=pOyt1AwOnrR-VR9-kXqgSwLT.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/3/10.1063/1.4915301&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/3/10.1063/1.4915301&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/3/10.1063/1.4915301'
Top,Right1,Right2,Right3,