Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/3/10.1063/1.4915537
1.
1.S. S. Lee, S. B. Tang, D.-M. Smilgies, A. R. Woll, M. A. Loth, J. M. Mativetsky, J. E. Anthony, and Y.-L. Loo, Adv. Mater. 24, 2692 (2012).
http://dx.doi.org/10.1002/adma.201104619
2.
2.G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, and Z. Bao, Adv. Mater. 26, 487 (2014).
http://dx.doi.org/10.1002/adma.201302439
3.
3.S. S. Lee, J. M. Mativetsky, M. A. Loth, J. E. Anthony, and Y.-L. Loo, ACS Nano 6, 9879 (2012).
http://dx.doi.org/10.1021/nn303446h
4.
4.M. M. Payne, S. A. Odom, S. R. Parkin, and J. E. Anthony, Org. Lett. 6, 3325 (2004).
http://dx.doi.org/10.1021/ol048686d
5.
5.K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony, and Y.-L. Loo, Chem. Mater. 19, 5210 (2007).
http://dx.doi.org/10.1021/cm071018c
6.
6.K. Dickey, J. Anthony, and Y.-L. Loo, Adv. Mater. 18, 1721 (2006).
http://dx.doi.org/10.1002/adma.200600188
7.
7.H. D. Keith and J. F. J. Padden, J. Appl. Phys. 34, 2409 (1963).
http://dx.doi.org/10.1063/1.1702757
8.
8.A. Skapski, R. Billups, and A. Rooney, J. Chem. Phys. 26, 1350 (1957).
http://dx.doi.org/10.1063/1.1743533
9.
9.D. Jones, J. Mater. Sci. 9, 1 (1974).
http://dx.doi.org/10.1007/BF00554751
10.
10.L. Granasy, L. Ratkai, A. Szallas, B. Korbuly, G. I. Toth, L. Kornyei, and T. Pusztai, Metall. Mater. Trans. A 45, 1694 (2014).
http://dx.doi.org/10.1007/s11661-013-1988-0
11.
11.A. M. Hiszpanski and Y.-L. Loo, Energy Environ. Sci. 7, 592 (2014).
http://dx.doi.org/10.1039/C3EE42615G
12.
12.K. R. Elder, M. Grant, N. Provatas, and J. M. Kosterlitz, Phys. Rev. E 64, 021604 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.021604
13.
13.N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering (Wiley-VCH, 2010), pp. 3942.
14.
14.G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, Materials Science & Technology, 2nd ed. (Taylor & Francis, 2009).
15.
15.D. Du, H. Zhang, and D. J. Srolovitz, Acta Mater. 55, 467 (2007).
http://dx.doi.org/10.1016/j.actamat.2006.08.038
16.
16.M. Jabbour, C.-S. Man, and R. Paroni, J. Chem. Phys. 139, 144704 (2013).
http://dx.doi.org/10.1063/1.4823739
17.
17.C.-S. Man, M. Jabbour, R. Paroni, Y.-L. Loo, A. K. Hailey, S. S. Lee, J. E. Anthony, and M. A. Loth, “Spherulitic crystallization in binary thin films under solvent-vapor annealing. ii. Small-molecule semiconductor and additive” (unpublished).
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4915537 for additional information on the experimental procedure and analytical derivations.[Supplementary Material]
19.
19.S. Muralidharan, “Continuum studies of microstructure formation in metallic and organic thin films,” Ph.D. thesis (Department of Mechanical and Aerospace Engineering, Princeton University, 2012).
20.
20.R. Kobayashi, Phys. D 63, 410 (1993).
http://dx.doi.org/10.1016/0167-2789(93)90120-P
21.
21.A. Fang and M. Haataja, Phys. Rev. E 89, 022407 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.022407
22.
22.D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
http://dx.doi.org/10.1063/1.1699435
23.
23.H. Lu, Z. Wen, and Q. Jiang, J. Phys. Org. Chem. 20, 236 (2007).
http://dx.doi.org/10.1002/poc.1136
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/3/10.1063/1.4915537
Loading
/content/aip/journal/aplmater/3/3/10.1063/1.4915537
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/3/10.1063/1.4915537
2015-03-19
2016-12-04

Abstract

Recently, it has been demonstrated that solvent-vapor-induced crystallization of triethylsilylethynyl anthradithiophene (TES ADT) thin films can be directed on millimeter length scales along arbitrary paths by controlling local crystal growth rates via pre-patterning the substrate. Here, we study the influence of capillary effects on crystallization along such channels. We first derive an analytical expression for the steady-state growth front velocity as a function of channel width and validate it with numerical simulations. Then, using data from TES ADT guided crystallization experiments, we extract a characteristic channel width, which provides the smallest feature size that can be obtained by this technique.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/3/1.4915537.html;jsessionid=IEU-pppyX7TZj2zVpMDKEy15.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/3/10.1063/1.4915537&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/3/10.1063/1.4915537&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/3/10.1063/1.4915537'
Top,Right1,Right2,Right3,