Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4907282
1.
1.M. Fallot, Ann. Phys. 10, 291 (1938).
2.
2.J. S. Kouvel and C. C. Hartelius, J. Appl. Phys. 33, 1343 (1962).
http://dx.doi.org/10.1063/1.1728721
3.
3.F. de Bergevin and L. Muldawer, C. R. Acad. Sci. 252, 1347 (1961).
4.
4.A. I. Zakharov, A. Kadomtseva, R. Levitin, and E. Ponyatovskii, J. Exp. Theor. Phys. (USSR) 19, 1348 (1964).
5.
5.M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. K. Dovletov, J. Appl. Phys 79, 1689 (1996).
http://dx.doi.org/10.1063/1.360955
6.
6.G. Shirane, C. W. Chen, P. A. Flinn, and R. Nathans, Phys. Rev. 131, 183 (1963).
http://dx.doi.org/10.1103/PhysRev.131.183
7.
7.J. van Driel, R. Coehoorn, G. J. Strijkers, E. Bruck, and F. R. de Boer, J. Appl. Phys. 85, 1026 (1999).
http://dx.doi.org/10.1063/1.369224
8.
8.P. H. L. Walter, J. Appl. Phys. 35, 938 (1964).
http://dx.doi.org/10.1063/1.1713547
9.
9.C. J. Schinkel, R. Hartog, and F. H. A. M. Hochstenbach, J. Phys. F: Met. Phys. 4, 1412 (1974).
http://dx.doi.org/10.1088/0305-4608/4/9/013
10.
10.R. Barua, F. Jiménez-Villacorta, and L. H. Lewis, Appl. Phys. Lett. 103, 102407 (2013).
http://dx.doi.org/10.1063/1.4820583
11.
11.N. V. Baranov and E. A. Barabanova, J. Alloys Compd. 219, 139 (1995).
http://dx.doi.org/10.1016/0925-8388(94)01375-6
12.
12.K. Kamenev, Z. Arnold, J. Kamarad, and N. V. Baranov, J. Appl. Phys. 81, 5680 (1997).
http://dx.doi.org/10.1063/1.364634
13.
13.J. M. Lommel and J. S. Kouvel, J. Appl. Phys. 38, 1263 (1967).
http://dx.doi.org/10.1063/1.1709570
14.
14.Y. Ohtani and I. Hatakeyama, J. Appl. Phys. 74, 3328 (1993).
http://dx.doi.org/10.1063/1.354557
15.
15.S. Maat, J.-U. Thiele, and E. E. Fullerton, Phys. Rev. B 72, 214432 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214432
16.
16.C. Stamm, J.-U. Thiele, T. Kachel, I. Radu, P. Ramm, M. Kosuth, J. Minár, H. Ebert, H. A. Dürr, W. Eberhardt, and C. H. Back, Phys. Rev. B 77, 184401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184401
17.
17.M. Sharma, H. M. Aarbogh, J. U. Thiele, S. Maat, E. E. Fullerton, and C. Leighton, J. Appl. Phys. 109, 083913 (2011).
http://dx.doi.org/10.1063/1.3573503
18.
18.M. A. de Vries, M. Loving, A. P. Mihai, L. H. Lewis, D. Heiman, and C. H. Marrows, New J. Phys. 15, 013008 (2013).
http://dx.doi.org/10.1088/1367-2630/15/1/013008
19.
19.C. Bordel, J. Juraszek, D. W. Cooke, C. Baldasseroni, S. Mankovsky, J. Minár, H. Ebert, S. Moyerman, E. E. Fullerton, and F. Hellman, Phys. Rev. Lett. 109, 117201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.117201
20.
20.J.-U. Thiele, S. Maat, and E. E. Fullerton, Appl. Phys. Lett. 82, 2859 (2003).
http://dx.doi.org/10.1063/1.1571232
21.
21.X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, R. J. Paull, J. D. Clarkson, J. Kudrnovský, I. Turek, J. Kuneš, D. Yi, J.-H. Chu, C. T. Nelson, L. You, E. Arenholz, S. Salahuddin, J. Fontcuberta, T. Jungwirth, and R. Ramesh, Nat. Mater. 13, 367 (2014).
http://dx.doi.org/10.1038/nmat3861
22.
22.Y. Ding, D. A. Arena, J. Dvorak, M. Ali, C. J. Kinane, C. H. Marrows, B. J. Hickey, and L. H. Lewis, J. Appl. Phys. 103, 07B515 (2008).
http://dx.doi.org/10.1063/1.2837247
23.
23.R. Fan, C. J. Kinane, T. R. Charlton, R. Dorner, M. Ali, M. A. de Vries, R. Brydson, C. H. Marrows, B. J. Hickey, D. A. Arena, B. K. Tanner, G. Nisbet, and S. Langridge, Phys. Rev. B 82, 184418 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.184418
24.
24.M. Loving, M. A. de Vries, F. Jimenez-Villacorta, C. L. Graët, X. Liu, R. Fan, S. Langridge, D. Heiman, C. H. Marrows, and L. H. Lewis, J. Appl. Phys. 112, 043512 (2012).
http://dx.doi.org/10.1063/1.4747921
25.
25.C. Baldasseroni, G. K. Pálsson, C. Bordel, S. Valencia, A. A. Unal, F. Kronast, S. Nemsak, C. S. Fadley, J. A. Borchers, B. B. Maranville, and F. Hellman, J. Appl. Phys. 115, 043919 (2014).
http://dx.doi.org/10.1063/1.4862961
26.
26.I. Suzuki, M. Itoh, and T. Taniyama, Appl. Phys. Lett. 104, 022401 (2014).
http://dx.doi.org/10.1063/1.4861455
27.
27.R. O. Cherifi, V. Ivanovskaya, L. C. Phillips, A. Zobelli, I. C. Infante, E. Jacquet, V. Garcia, S. Fusil, P. R. Briddon, N. Guiblin, A. Mougin, A. A. Ünal, F. Kronast, S. Valencia, B. Dkhil, A. Barthélémy, and M. Bibes, Nat. Mater. 13, 345 (2014).
http://dx.doi.org/10.1038/nmat3870
28.
28.J. W. Kim, P. J. Ryan, Y. Ding, L. H. Lewis, M. Ali, C. J. Kinane, B. J. Hickey, C. H. Marrows, and D. A. Arena, Appl. Phys. Lett. 95, 222515 (2009).
http://dx.doi.org/10.1063/1.3265921
29.
29.M. Loving, F. Jimenez-Villacorta, B. Kaeswurm, D. A. Arena, C. H. Marrows, and L. H. Lewis, J. Phys. D: Appl. Phys. 46, 162002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/16/162002
30.
30.S. O. Mariager, F. Pressacco, G. Ingold, A. Caviezel, E. Möhr-Vorobeva, P. Beaud, S. L. Johnson, C. J. Milne, E. Mancini, S. Moyerman, E. E. Fullerton, R. Feidenhans’l, C. H. Back, and C. Quitmann, Phys. Rev. Lett. 108, 087201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.087201
31.
31.M. A. de Vries, M. Loving, M. McLaren, R. M. D. Brydson, X. Liu, S. Langridge, L. H. Lewis, and C. H. Marrows, Appl. Phys. Lett. 104, 232407 (2014).
http://dx.doi.org/10.1063/1.4883369
32.
32.I. Radu, C. Stamm, N. Pontius, T. Kachel, P. Ramm, J.-U. Thiele, H. A. Dürr, and C. H. Back, Phys. Rev. B 81, 104415 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.104415
33.
33.C. Baldasseroni, C. Bordel, A. X. Gray, A. M. Kaiser, F. Kronast, J. Herrero-Albillos, C. M. Schneider, C. S. Fadley, and F. Hellman, Appl. Phys. Lett. 100, 262401 (2012).
http://dx.doi.org/10.1063/1.4730957
34.
34.S. O. Mariager, L. L. Guyader, M. Buzzi, G. Ingold, and C. Quitmann, e-print arXiv:1301.4164v1 [cond-mat.mtrl-sci] (2013).
35.
35.C. J. Kinane, M. Loving, M. A. de Vries, R. Fan, T. R. Charlton, J. S. Claydon, D. A. Arena, F. Maccherozzi, S. S. Dhesi, D. Heiman, C. H. Marrows, L. H. Lewis, and S. Langridge, New J. Phys. 16, 113073 (2014).
http://dx.doi.org/10.1088/1367-2630/16/11/113073
36.
36.P. Kushwaha, A. Lakhani, R. Rawat, and P. Chaddah, Phys. Rev. B 80, 174413 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174413
37.
37.S. Yuasa, H. Miyajima, Y. Otani, K. Tsuji, Y. Katayama, K. Kusumi, H. Yokoyama, K. Yaoita, and O. Shimomura, J. Phys. Soc. Jpn. 63, 855 (1994).
http://dx.doi.org/10.1143/JPSJ.63.855
38.
38.C. L. Graët, M. A. de Vries, M. McLaren, R. M. D. Brydson, M. Loving, D. Heiman, L. H. Lewis, and C. H. Marrows, J. Visualized Exp. 80, e50603 (2013).
http://dx.doi.org/10.3791/50603
39.
39.B. E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, Massachusetts, 1969).
40.
40.M. Björck and G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007).
http://dx.doi.org/10.1107/S0021889807045086
41.
41.See supplementary material at http://dx.doi.org/10.1063/1.4907282 for additional information on the measurement techniques, data, and analysis.[Supplementary Material]
42.
42.A. Aharoni, Bull. Am. Phys. Soc. 26, 1218 (1981).
43.
43.C. H. Marrows, L. C. Chapon, and S. Langridge, Mater. Today 12, 70 (2009).
http://dx.doi.org/10.1016/S1369-7021(09)70232-9
44.
44.P. A. Kienzle, J. Krycka, N. Patel, and I. Sahin, Refl1D, version 0.7.6, Computer Software, University of Maryland, College Park, MD, 2011; retrieved October 2014, available from http://reflectometry.org/danse.
45.
45.T. Saerbeck, F. Klose, D. Lott, G. J. Mankey, Z. Lu, P. R. LeClair, W. Schmidt, A. P. J. Stampfl, S. Danilkin, M. Yethiraj, and A. Schreyer, Phys. Rev. B 82, 134409 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134409
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4907282
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4907282
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4907282
2015-02-04
2016-12-04

Abstract

Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4907282.html;jsessionid=ANeDAd7-IYTpPkVKHXhZNo5Y.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4907282&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4907282&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4907282'
Top,Right1,Right2,Right3,