Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4908038
1.
1.S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, Chem. Mater. 18(7), 18731877 (2006).
http://dx.doi.org/10.1021/cm060261t
2.
2.S. M. Kauzlarich, S. R. Brown, and S. G. Jeffrey, Dalton Trans. 2007(21), 2099.
http://dx.doi.org/10.1039/B702266B
3.
3.E. S. Toberer, C. A. Cox, S. R. Brown, T. Ikeda, A. F. May, S. M. Kauzlarich, and G. J. Snyder, Adv. Funct. Mater. 18(18), 27952800 (2008).
http://dx.doi.org/10.1002/adfm.200800298
4.
4.J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. 48(46), 86168639 (2009).
http://dx.doi.org/10.1002/anie.200900598
5.
5.J. Y. Chan, M. M. Olmstead, S. M. Kauzlarich, and D. J. Webb, Chem. Mater. 10(11), 35833588 (1998).
http://dx.doi.org/10.1021/cm980358i
6.
6.I. R. Fisher, T. A. Wiener, S. L. Bud’ko, P. C. Canfield, J. Y. Chan, and S. M. Kauzlarich, Phys. Rev. B 59(21), 1382913834 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.13829
7.
7.G. Cordier, H. Schäfer, and M. Stelter, Z. anorg. allg. Chem. 519, 183188 (1984).
http://dx.doi.org/10.1002/zaac.19845191219
8.
8.A. P. Holm, S. M. Kauzlarich, S. A. Morton, G. D. Waddill, W. E. Pickett, and J. G. Tobin, J. Am. Chem. Soc. 124(33), 98949898 (2002).
http://dx.doi.org/10.1021/ja020564y
9.
9.D. Sánchez-Portal, R. Martin, S. Kauzlarich, and W. Pickett, Phys. Rev. B 65(14), 144414 (2002).
http://dx.doi.org/10.1103/physrevb.65.144414
10.
10.K. Burch, A. Schafgans, N. Butch, T. Sayles, M. Maple, B. Sales, D. Mandrus, and D. Basov, Phys. Rev. Lett. 95(4), 046401 (2005).
http://dx.doi.org/10.1103/physrevlett.95.046401
11.
11.B. Sales, R. Jin, and D. Mandrus, Phys. Rev. B 77(2), 024409 (2008).
http://dx.doi.org/10.1103/physrevb.77.024409
12.
12.B. Sales, P. Khalifah, T. Enck, E. Nagler, R. Sykora, R. Jin, and D. Mandrus, Phys. Rev. B 72(20), 205207 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205207
13.
13.S. R. Brown, E. S. Toberer, T. Ikeda, C. A. Cox, F. Gascoin, S. M. Kauzlarich, and G. J. Snyder, Chem. Mater. 20(10), 34123419 (2008).
http://dx.doi.org/10.1021/cm703616q
14.
14.C. A. Cox, E. S. Toberer, A. A. Levchenko, S. R. Brown, G. J. Snyder, A. Navrotsky, and S. M. Kauzlarich, Chem. Mater. 21(7), 13541360 (2009).
http://dx.doi.org/10.1021/cm803252r
15.
15.T. Yi, M. N. Abdusalyamova, F. Makhmudov, and S. M. Kauzlarich, J. Mater. Chem. 22(29), 1437814384 (2012).
http://dx.doi.org/10.1039/c2jm32089d
16.
16.J. F. Rauscher, C. A. Cox, T. Yi, C. M. Beavers, P. Klavins, E. S. Toberer, G. J. Snyder, and S. M. Kauzlarich, Dalton Trans. 39(4), 1055 (2010).
http://dx.doi.org/10.1039/b920250a
17.
17.C. A. Cox, S. R. Brown, G. J. Snyder, and S. M. Kauzlarich, J. Electron. Mater. 39(9), 13731375 (2010).
http://dx.doi.org/10.1007/s11664-010-1149-9
18.
18.E. S. Toberer, S. R. Brown, T. Ikeda, S. M. Kauzlarich, and G. J. Snyder, Appl. Phys. Lett. 93(6), 062110 (2008).
http://dx.doi.org/10.1063/1.2970089
19.
19.J. H. Roudebush, J. Grebenkemper, Y. Hu, N. Kazem, M. N. Abdusalyamova, and S. M. Kauzlarich, J. Solid State Chem. 211, 206211 (2014).
http://dx.doi.org/10.1016/j.jssc.2013.12.023
20.
20.C. A. Uvarov, M. N. Abdusalyamova, F. Makhmudov, K. Star, J. P. Fleurial, and S. M. Kauzlarich, Sci. Adv. Mater. 3(4), 652658 (2011).
http://dx.doi.org/10.1166/sam.2011.1196
21.
21.C. Yu, Y. Chen, H. Xie, G. J. Snyder, C. Fu, J. Xu, X. Zhao, and T. Zhu, Appl. Phys. Express 5(3), 031801 (2012).
http://dx.doi.org/10.1143/apex.5.031801
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4908038 for microprobe, crystallographic tables, ZFC, and FC susceptibility forx = 0.45, and a figure showing inverse susceptibility versus temperature.[Supplementary Material]
23.
23.R. D. Shannon, Acta Cryst. A32, 751767 (1976).
http://dx.doi.org/10.1107/S0567739476001551
24.
24.S. Kastbjerg, C. A. Uvarov, S. M. Kauzlarich, E. Nishibori, M. A. Spackman, and B. B. Iversen, Chem. Mater. 23(16), 37233730 (2011).
http://dx.doi.org/10.1021/cm201330x
25.
25.H. Kim, P. Klavins, and S. Kauzlarich, Chem. Mater. 14(5), 23082316 (2002).
http://dx.doi.org/10.1021/cm011624m
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4908038
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4908038
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4908038
2015-02-17
2016-09-28

Abstract

Single crystals of Y bCeMnSb were grown from tin metal as a flux solvent with a maximum Ce incorporation of 0.6. The phases with ∼ 0.1–0.6 crystallize in the tetragonal CaAlSb structure type with 4/ space group. In this structure type, there are 4 crystallographically unique Yb sites and the structure can be described according to the Zintl concept as containing 14Y b2+ + [MnSb]9− + [Sb]7− + 4Sb3−. For > 0.3, Ce is incorporated on specific Yb sites in the structure as a function of , initially at = 0.3 on the Yb(2) site followed by Yb(4) at higher values of . These sites have the largest volume as indicated by Hirshfeld surface analysis of chemical bonding. As Ce content is increased, the ferromagnetic ordering temperatures decrease and effective paramagnetic moments increase. The magnetic ordering temperatures decrease from the undoped T of 50 K until ∼ 0.4, where the lowest T of 39 K is reached. As the additional electron introduced by Ce3+ fills the hole associated with [MnSb]9−, the screening of the Mn moments is reduced. This leads to an increase in overall moment attributed to Mn in addition to the moment from the Ce3+ electron. Increasing Ce content also leads to an increase in electrical resistivity, an expected effect from reducing the carrier concentration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4908038.html;jsessionid=KRzfScJuN-tDIcXdlNNnJjC2.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4908038&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4908038&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4908038'
Top,Right1,Right2,Right3,