Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4908159
1.
1.L. Huang and N. A. F. Jaeger, Appl. Phys. Lett. 65(14), 1763-1765 (1994).
http://dx.doi.org/10.1063/1.112911
2.
2.M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22(18), 3936-3944 (2012).
http://dx.doi.org/10.1002/adfm.201201174
3.
3.V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72(16), 1981-1983 (1998).
http://dx.doi.org/10.1063/1.121491
4.
4.R. Wang, D. Fong, F. Jiang, M. Highland, P. Fuoss, C. Thompson, A. Kolpak, J. Eastman, S. Streiffer, A. Rappe, and G. Stephenson, Phys. Rev. Lett. 102(4), 047601 (2009).
http://dx.doi.org/10.1103/physrevlett.102.047601
5.
5.D. I. Khomskii, J. Magn. Magn. Mater. 306(1), 1-8 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.01.238
6.
6.C. A. F. Vaz, J. Hoffman, C. H. Anh, and R. Ramesh, Adv. Mater. 22(26-27), 2900-2918 (2010).
http://dx.doi.org/10.1002/adma.200904326
7.
7.T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, Phys. Rev. B 64(10), 104419 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.104419
8.
8.C. J. Fennie and K. M. Rabe, Phys. Rev. B 72(10), 100103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100103
9.
9.T. Choi, Y. Horibe, H. T. Yi, Y. J. Choi, W. D. Wu, and S. W. Cheong, Nat. Mater. 9(3), 253-258 (2010).
http://dx.doi.org/10.1038/nmat2714
10.
10.B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3(3), 164-170 (2004).
http://dx.doi.org/10.1038/nmat1080
11.
11.M. Lilienblum, E. Soergel, and M. Fiebig, J. Appl. Phys. 110(5), 052007 (2011).
http://dx.doi.org/10.1063/1.3623777
12.
12.E. B. Lochocki, S. Park, N. Lee, S. W. Cheong, and W. D. Wu, Appl. Phys. Lett. 99(23), 232901 (2011).
http://dx.doi.org/10.1063/1.3665255
13.
13.Y. N. Geng, N. Lee, Y. J. Choi, S. W. Cheong, and W. D. Wu, Nano Lett. 12(12), 6055-6059 (2012).
http://dx.doi.org/10.1021/nl301432z
14.
14.D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, Nat. Mater. 11(4), 284-288 (2012).
http://dx.doi.org/10.1038/nmat3249
15.
15.W. Wu, Y. Horibe, N. Lee, S. W. Cheong, and J. Guest, Phys. Rev. Lett. 108(7), 077203 (2012).
http://dx.doi.org/10.1103/physrevlett.108.077203
16.
16.Y. N. Geng, H. Das, A. L. Wysocki, X. Y. Wang, S. W. Cheong, M. Mostovoy, C. J. Fennie, and W. D. Wu, Nat. Mater. 13(2), 163-167 (2014).
http://dx.doi.org/10.1038/nmat3813
17.
17.Y. Geng and W. Wu, Rev. Sci. Instrum. 85, 053901 (2014).
http://dx.doi.org/10.1063/1.4874006
18.
18.S. Artyukhin, K. T. Delaney, N. A. Spaldin, and M. Mostovoy, Nat. Mater. 13(1), 42-49 (2014).
http://dx.doi.org/10.1038/nmat3786
19.
19.H. Das, A. L. Wysocki, Y. N. Geng, W. D. Wu, and C. J. Fennie, Nat. Commun. 5, 11 (2014).
http://dx.doi.org/10.1038/ncomms3998
20.
20.S. C. Chae, Y. Horibe, D. Y. Jeong, S. Rodan, N. Lee, and S. W. Cheong, Proc. Natl. Acad. Sci. U. S. A. 107(50), 21366-21370 (2010).
http://dx.doi.org/10.1073/pnas.1011380107
21.
21.S. C. Chae, N. Lee, Y. Horibe, M. Tanimura, S. Mori, B. Gao, S. Carr, and S. W. Cheong, Phys. Rev. Lett. 108(16), 167603 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.167603
22.
22.S. C. Chae, Y. Horibe, D. Y. Jeong, N. Lee, K. Iida, M. Tanimura, and S. W. Cheong, Phys. Rev. Lett. 110(16), 167601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.167601
23.
23.X. Wang, M. Mostovoy, M. G. Han, Y. Horibe, T. Aoki, Y. Zhu, and S. W. Cheong, Phys. Rev. Lett. 112(24), 247601 (2014).
http://dx.doi.org/10.1103/physrevlett.112.247601
24.
24.S.-Z. Lin, X. Wang, Y. Kamiya, G.-W. Chern, F. Fan, D. Fan, B. Casas, Y. Liu, V. Kiryukhin, W. H. Zurek, C. D. Batista, and S.-W. Cheong, Nat. Phys. 10(12), 970-977 (2014).
http://dx.doi.org/10.1038/nphys3142
25.
25.T. Kibble, Phys. Today 60(9), 47-52 (2007).
http://dx.doi.org/10.1063/1. 2784684
26.
26.W. H. Zurek, Nature 317(6037), 505-508 (1985).
http://dx.doi.org/10. 1038/317505a0
27.
27.T. W. B. Kibble, J. Phys. A: Math. Gen. 9(8), 1387 (1976).
http://dx.doi.org/10.1088/0305-4470/9/8/029
28.
28.A. del Campo and W. H. Zurek, Int. J. Mod. Phys. A 29(08), 1430018 (2014).
http://dx.doi.org/10.1142/s0217751x1430018x
29.
29.S. M. Griffin, M. Lilienblum, K. T. Delaney, Y. Kumagai, M. Fiebig, and N. A. Spaldin, Phys. Rev. X 2(4), 041022 (2012).
http://dx.doi.org/10.1103/physrevx.2.041022
30.
30.M. G. Han, Y. M. Zhu, L. J. Wu, T. Aoki, V. Volkov, X. Y. Wang, S. C. Chae, Y. S. Oh, and S. W. Cheong, Adv. Mater. 25(17), 2415-2421 (2013).
http://dx.doi.org/10.1002/adma.201204766
31.
31.I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78(1), 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
32.
32.J. R. Sahu, A. Ghosh, A. Sundaresan, and C. N. R. Rao, Mater. Res. Bull. 44(11), 2123-2126 (2009).
http://dx.doi.org/10.1016/j.materresbull.2009.07.005
33.
33.Y. Kumagai and N. A. Spaldin, Nat. Commun. 4, 1540 (2013).
http://dx.doi.org/10.1038/ncomms2545
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4908159
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4908159
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4908159
2015-02-18
2016-12-10

Abstract

Topological vortices with complex domains and domain walls exist in hexagonal manganites, which undergo a structural transition accompanying ferroelectric polarization and trimerization. We have systematically studied the origin of two different types (type-I and type-II) of vortex domains with controlled oxygen stoichiometry and found that the evolution between type-I and type-II vortex domains and the presence of charged walls between two different trimerization antiphase domains result from an oxygen vacancy gradient. We have also discovered a rare phenomenon of vortex core split, which appears to stem from the instability of charged ferroelectric walls between domains with the same trimerization antiphase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4908159.html;jsessionid=ACBscMrPorefvu5lrhUewU6R.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4908159&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4908159&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4908159'
Top,Right1,Right2,Right3,