Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
2.A. F. May, J. P. Fleurial, and G. J. Snyder, Phys. Rev. B 78, 125205 (2008).
3.Y. Pei, H. Wang, and G. J. Snyder, Adv. Mater. 24, 6124 (2012).
4.E. S. Toberer, L. L. Baranowski, and C. Dames, Annu. Rev. Mater. Res. 42, 179 (2012).
5.K. Lukas, W. Liu, G. Joshi, M. Zebarjadi, M. Dresselhaus, Z. Ren, G. Chen, and C. Opeil, Phys. Rev. B 85, 205410 (2012).
6.E. Flage-Larsen and Ø. Prytz, Appl. Phys. Lett. 99, 202108 (2011).
7.A. F. May and G. J. Snyder, in Thermoelectrics and its Energy Harvesting, edited by D. M. Rowe (CRC Press, London, 2012), Vol. 1 Chap. 11.
8.Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).
9.Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, Adv. Funct. Mater. 21, 241 (2011).
10.Y. Pei, N. A. Heinz, A. Lalonde, and G. J. Snyder, Energy Environ. Sci. 4, 3640 (2011).
11.A. Zevalkink, W. G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G. J. Snyder, Energy Environ. Sci. 5, 9121 (2012).
12.A. F. May, J.-P. Fleurial, and G. J. Snyder, Chem. Mater. 22, 2995 (2010).
13.A. Zevalkink, E. S. Toberer, W. G. Zeier, E. Flage-Larsen, and G. J. Snyder, Energy Environ. Sci. 4, 510 (2011).
14.C. Fu, Y. Liu, H. Xie, X. Liu, X. Zhao, G. J. Snyder, J. Xie, and T. Zhu, J. Appl. Phys. 114, 134905 (2013).
15.H. Wang, Y. Pei, A. D. Lalonde, and G. J. Snyder, Proc. Natl. Acad. Sci. U.S.A. 109, 9705 (2012).
16.H. Wang, E. Schechtel, Y. Pei, and G. J. Snyder, Adv. Energy Mater. 3, 488 (2013).
17.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
18.A. D. LaLonde, Y. Pei, and G. J. Snyder, Energy Environ. Sci. 4, 2090 (2011).
19.H. Xie, H. Wang, C. Fu, Y. Liu, G. J. Snyder, X. Zhao, and T. Zhu, Sci. Rep. 4, 6888 (2014).
20.C. B. Vining, J. Appl. Phys. 69, 331 (1991).
21.C. Wood, Rep. Prog. Phys. 51, 459 (1988).
22.See supplementary material at for an estimation of L with an accuracy within 0.5% for SPB-APS; more details about Fig.2; more details regarding the L for the non-parabolic band model; and non-parabolicity parameter dependent L as S approaches zero.[Supplementary Material]
23.C. M. Bhandari and D. M. Rowe, J. Phys. D: Appl. Phys. 18, 873 (1985).
24.Y. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970), Vol. 299, p. 181.
25.H. Wang, Ph.D. thesis,California Institute of Technology, 2014.
26.P. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X. Jia, and G. Zou, Mater. Trans. 46, 2690 (2005).
27.Z. M. Gibbs, H.-S. Kim, H. Wang, and G. J. Snyder, Appl. Phys. Lett. 106, 022112 (2015).

Data & Media loading...


Article metrics loading...



In analyzing improvements due to lattice thermal conductivity () reduction, electrical conductivity () and total thermal conductivity () are often used to estimate the electronic component of the thermal conductivity () and in turn from = ∼ . The Wiedemann-Franz law, = , where is Lorenz number, is widely used to estimate from measurements. It is a common practice to treat as a universal factor with 2.44 × 10−8 WΩK−2 (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where converges to 1.5 × 10−8 WΩK−2 for acoustic phononscattering. The decrease in is correlated with an increase in thermopower (absolute value of Seebeck coefficient ()). Thus, a first order correction to the degenerate limit of can be based on the measured thermopower, ||, independent of temperature or doping. We propose the equation: (where is in 10−8 WΩK−2 and in μV/K) as a satisfactory approximation for . This equation is accurate within 5% for single parabolic band/acoustic phononscattering assumption and within 20% for PbSe, PbS, PbTe, SiGe where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd