Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
2.D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).
3.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. H. Y. S. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
4.L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
5.Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, Nat. Mater. 13, 677 (2014).
6.M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Nat. Commun. 5, 3786 (2014).
7.S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).
8.Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).
9.Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, e-print arXiv:1411.0005 (unpublished).
10.A. C. Potter and P. A. Lee, Phys. Rev. B 85, 094516 (2012).
11.X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
12.J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 82, 094522 (2010).
13.D. E. Kharzeev and H.-U. Yee, Phys. Rev. B 88, 115119 (2013).
14.S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, M. Sato, and Y. Ando, Phys. Rev. Lett. 107, 217001 (2011).
15.L. M. Schoop, L. S. Xie, R. Chen, Q. D. Gibson, S. H. Lapidus, I. Kimchi, M. Hirschberger, N. Haldolaarachchige, M. N. Ali, C. A. Belvin, T. Liang, J. B. Neaton, N. P. Ong, A. Vishwanath, and R. J. Cava, e-print arXiv:1412.2767 (unpublished).
16.K. E. Arpino, D. C. Wallace, Y. F. Nie, T. Birol, P. D. C. King, S. Chatterjee, M. Uchida, S. M. Koohpayeh, J.-J. Wen, C. J. Fennie, K. M. Shen, and T. M. McQueen, Phys. Rev. Lett. 112, 017002 (2014).
17.M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Phys. Rev. Lett. 109, 186403 (2012).
18.S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Science 332, 560 (2011).
19.T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).
20.S. Bradtmöller and P. Böttcher, Z. Anorg. Allg. Chem. 619, 1155 (1993).
21.A. M. Glazer, Acta. Cryst. B 28, 3384 (1972).
22.P. Boettcher, Th. Doert, Ch. Druska, and S. Bradtmoeller, J. Alloys Compd. 246, 209 (1997).
23.B. A. Kuropatwa, A. Assoud, and H. Kleinke, J. Alloys Compd. 509, 6768 (2011).
24.K. Momma and F. Izumi, J. Appl. Cryst. 44, 1272 (2011).
25.A. Juodakis and C. R. Kannewurf, J. Appl. Phys. 39, 3003 (1968).
26.J. C. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
27.L. Vegard, Z. Phys. 5, 1726 (1921);
27.A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991).
28.A. P. Ramirez and G. R. Kowach, Phys. Rev. Lett. 80, 4903 (1988).
29.A. Tari, The Specific Heat of Matter at Low Temperature (Imperial College Press, London 2003) pp. 24, 31, and 66.
30.P. W. Anderson, Proceedings of the All-Union Conference on the ‘Physics of Dielectrics’ (Academy of Science, USSR, Moscow, 1958), Vol. 290.
31.W. Cochran, Adv. Phys. 9, 387 (1960).

Data & Media loading...


Article metrics loading...



The structural, superconducting, and electronic phase diagram of [Tl]TlSnTe is reported. Magnetization and specific heat measurements show bulk superconductivity exists for 0 ≤ ≤ 0.4. Resistivity measurements indicate a crossover from a metallic state at = 0 to a doped insulator at = 1. Universally, there is a large non-Debye specific heat contribution, characterized by an Einstein temperature of ≈ 35 K. Density functional theory calculations predict = 0 to be a topological metal, while = 1 is a topological crystalline insulator. The disappearance of superconductivity correlates with the transition between these distinct topological states.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd