Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Ronning and J. L. Sarrao, “Materials prediction scores a hit,” Physics 6, 109 (2013).
2.D. J. Scalapino, “A common thread: The pairing interaction for unconventional superconductors,” Rev. Mod. Phys. 84, 13831417 (2012).
3.Z. Fisk, D. W. Hess, C. J. Pethick, D. Pines, J. L. Smith, J. D. Thompson, and J. O. Willis, “Heavy-electron metals: New highly correlated states of matter,” Science 239(4835), 3342 (1988).
4.F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, “Superconductivity in the presence of strong pauli paramagnetism: CeCu2Si2,” Phys. Rev. Lett. 43, 18921896 (1979).
5.G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, “Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3,” Phys. Rev. Lett. 52, 679682 (1984).
6.H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, “UBe13: An unconventional actinide superconductor,” Phys. Rev. Lett. 50, 15951598 (1983).
7.T. T. M. Palstra, A. A. Menovsky, J. v. d. Berg, A. J. Dirkmaat, P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh, “Superconducting and magnetic transitions in the heavy-fermion system URu2Si2,” Phys. Rev. Lett. 55, 27272730 (1985).
8.M. B. Maple, J. W. Chen, Y. Dalichaouch, T. Kohara, C. Rossel, M. S. Torikachvili, M. W. McElfresh, and J. D. Thompson, “Partially gapped Fermi surface in the heavy-electron superconductor URu2Si2,” Phys. Rev. Lett. 56, 185188 (1986).
9.W. Schlabitz, J. Baumann, B. Pollit, U. Rauchschwalbe, H. Mayer, U. Ahlheim, and C. Bredl, “Superconductivity and magnetic order in a strongly interacting fermi-system: URu2Si2,” Z. Phys. B: Condens. Matter 62(2), 171177 (1986).
10.R. Movshovich, T. Graf, D. Mandrus, J. D. Thompson, J. L. Smith, and Z. Fisk, “Superconductivity in heavy-fermion CeRh2Si2,” Phys. Rev. B 53, 82418244 (1996).
11.N. Mathur, F. Grosche, S. Julian, I. Walker, D. Freye, R. Haselwimmer, and G. Lonzarich, “Magnetically mediated superconductivity in heavy fermion compounds,” Nature 394, 39 (1998).
12.D. Jaccard, K. Behnia, and J. Sierro, “Pressure induced heavy fermion superconductivity of CeCu2Ge2,” Phys. Lett. A 163(56), 475480 (1992).
13.Z. Ren, V. Pourovskii, L. G. Giriat, G. Lapertot, A. Georges, and D. Jaccard, “Giant overlap between the magnetic and superconducting phases of CeAu2Si2 under pressure,” Phys. Rev. X 4, 031055 (2014).
14.E. Moshopoulou, Z. Fisk, J. Sarrao, and J. Thompson, “Crystal growth and intergrowth structure of the new heavy fermion materials CeIrIn5 and CeRhIn5,” J. Solid State Chem. 158(1), 2533 (2001).
15.H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, “Pressure-induced superconductivity in quasi-2d CeRhIn5,” Phys. Rev. Lett. 84, 49864989 (2000).
16.C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, “Heavy-fermion superconductivity in CeCoIn5 at 2.3 k,” J. Phys.: Condens. Matter 13(17), L337 (2001).
17.C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, “A new heavy-fermion superconductor CeIrIn5: A relative of the cuprates?,” EPL 53(3), 354 (2001).
18.J. L. Sarrao and J. D. Thompson, “Superconductivity in cerium- and plutonium-based ‘115’ materials,” J. Phys. Soc. Jpn. 76(5), 051013 (2007).
19.J. D. Thompson and Z. Fisk, “Progress in heavy-fermion superconductivity: Ce115 and related materials,” J. Phys. Soc. Jpn. 81(1), 011002 (2012).
20.M. Nicklas, V. A. Sidorov, H. A. Borges, P. G. Pagliuso, C. Petrovic, Z. Fisk, J. L. Sarrao, and J. D. Thompson, “Magnetism and superconductivity in Ce2RhIn8,” Phys. Rev. B 67, 020506 (2003).
21.G. Chen, S. Ohara, M. Hedo, Y. Uwatoko, K. Saito, M. Sorai, and I. Sakamoto, “Observation of superconductivity in heavy-fermion compounds of Ce2CoIn8,” J. Phys. Soc. Jpn. 71(12), 28362838 (2002).
22.D. Kaczorowski, D. Gnida, A. Pikul, and V. Tran, “Heavy-fermion superconductivity in Ce2PdIn8,” Solid State Commun. 150(9-10), 411414 (2010).
23.K. Uhlirova, J. Prokleska, V. Sechovsky, and S. Danis, “Solution growth of Ce-Pd-In single crystals: Characterization of the heavy-fermion superconductor Ce2PdIn8,” Intermetallics 18(11), 20252029 (2010).
24.E. D. Bauer, H. O. Lee, V. A. Sidorov, N. Kurita, K. Gofryk, J.-X. Zhu, F. Ronning, R. Movshovich, J. D. Thompson, and T. Park, “Pressure-induced superconducting state and effective mass enhancement near the antiferromagnetic quantum critical point of CePt2In7,” Phys. Rev. B 81, 180507 (2010).
25.M. Kratochvilova, J. Prokleska, K. Uhlirova, M. Dusek, V. Sechovsky, and J. Custers, “Ambient pressure superconductivity emerging in the local moment antiferromagnetic phase of Ce3PdIn11,” e-print arXiv:1403.7010v2.
26.P. G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M. F. Hundley, J. L. Sarrao, J. D. Thompson, and Z. Fisk, “Coexistence of magnetism and superconductivity in CeRh1−xIrxIn5,” Phys. Rev. B 64, 100503 (2001).
27.K. Gofryk, F. Ronning, J.-X. Zhu, M. N. Ou, P. H. Tobash, S. S. Stoyko, X. Lu, A. Mar, T. Park, E. D. Bauer, J. D. Thompson, and Z. Fisk, “Electronic tuning and uniform superconductivity in CeCoIn5,” Phys. Rev. Lett. 109, 186402 (2012).
28.E. D. Bauer, J. D. Thompson, J. L. Sarrao, L. A. Morales, F. Wastin, J. Rebizant, J. C. Griveau, P. Javorsky, P. Boulet, E. Colineau, G. H. Lander, and G. R. Stewart, “Structural tuning of unconventional superconductivity in PuMGa5 (M = Co, Rh),” Phys. Rev. Lett. 93, 147005 (2004).
29.T. Willers, F. Strigari, Z. Hu, V. Sessi, N. B. Brookes, E. D. Bauer, J. L. Sarrao, J. D. Thompson, A. Tanaka, S. Wirth, L. H. Tjeng, and A. Severing, “Correlation between ground state and orbital anisotropy in heavy fermion materials,” Proc. Nat. Acad. Sci. U.S.A. 112, 2384 (2015) e-print arXiv:1309.3409.
30.J. Sarrao, L. Morales, J. Thompson, B. Scott, G. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G. Lander, “Plutonium-based superconductivity with a transition temperature above 18 K,” Nature 420, 297 (2002).
31.F. Wastin, P. Boulet, J. Rebizant, E. Colineau, and G. H. Lander, “Advances in the preparation and characterization of transuranium systems,” J. Phys.: Condens. Matter 15(28), S2279 (2003).
32.E. D. Bauer, M. M. Altarawneh, P. H. Tobash, K. Gofryk, O. E. Ayala-Valenzuela, J. N. Mitchell, R. D. McDonald, C. H. Mielke, F. Ronning, J.-C. Griveau, E. Colineau, R. Eloirdi, R. Caciuffo, B. L. Scott, O. Janka, S. M. Kauzlarich, and J. D. Thompson, “Localized 5f electrons in superconducting PuCoIn5: Consequences for superconductivity in PuCoGa5,” J. Phys.: Condens. Matter 24(5), 052206 (2012).
33.E. D. Bauer, P. H. Tobash, J. N. Mitchell, and J. L. Sarrao, “Single crystal growth of plutonium compounds from molten metal fluxes,” Philos. Mag. 92(19-21), 24662491 (2012).
34.E. D. Bauer and J. D. Thompson, “Plutonium-based heavy-fermion systems,” Annu. Rev. Condens. Matter Phys. (published online).
35.G. R. Stewart, “Superconductivity in iron compounds,” Rev. Mod. Phys. 83, 15891652 (2011).
36.H. Kirchmayr and C. Poldy, “Magnetism in rare earth-3d intermetallics,” J. Magn. Magn. Mater. 8(1), 142 (1978).
37.M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, “Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds,” IEEE Trans. Magn. 20, 15841589 (1984).
38.DOE report: 2011 Critical Materials Strategy.
39.J. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2009).
40.J. Schweizer and F. Tasset, “Polarised neutron study of the RCo5 intermetallic compounds. i. The cobalt magnetisation in YCo5,” J. Phys. F: Met. Phys. 10(12), 2799 (1980).
41.A. Heidemann, D. Richter, and K. Buschow, “Investigation of the hyperfine fields in the compounds LaCo13, LaCo5, YCo5 and ThCo5 by means of inelastic neutron scattering,” Z. Phys. B: Condens. Matter 22(4), 367372 (1975).
42.L. Nordstrom, M. S. S. Brooks, and B. Johansson, “Calculation of orbital magnetism and magnetocrystalline anisotropy energy in YCo5,” J. Phys.: Condens. Matter 4(12), 3261 (1992).
43.J.-X. Zhu, M. Janoschek, R. Rosenberg, F. Ronning, D. Thompson, J. M. A. Torrez, E. D. Bauer, and C. D. Batista, “LDA + DMFT approach to magnetocrystalline anisotropy of strong magnets,” Phys. Rev. X 4, 021027 (2014).
44.H. Ogata, H. Ido, and H. Yamauchi, “The role of boron in Rn+1Con+5B2n systems (R = Y , Sm, Dy; n=0, 1, 2, 3, and ∞),” J. Appl. Phys. 73(10), 59115913 (1993).
45.M. Bartashevich, T. Goto, and K. Koui, “Itinerant electron metamagnetism and magnetic anisotropy in the Y(Co1−xFex)3 system,” Physica B 292(1-2), 922 (2000).
46.D. Givord, H. Li, and J. Moreau, “Magnetic properties and crystal structure of Nd2Fe14B,” Solid State Commun. 50(6), 497499 (1984).
47.S. Chadov, J. Minar, M. I. Katsnelson, H. Ebert, D. Kodderitzsch, and A. I. Lichtenstein, “Orbital magnetism in transition metal systems: The role of local correlation effects,” EPL 82(3), 37001 (2008).
48.B. Sales, B. Saparov, M. McGuire, D. Singh, and D. Parker, “Ferromagnetism of Fe3Sn and alloys,” Sci. Rep. 4, 7024 (2014).
49.M. D. Kuzmin, K. P. Skokov, H. Jian, I. Radulov, and O. Gutfleisch, “Towards high-performance permanent magnets without rare earths,” J. Phys.: Condens. Matter 26(6), 064205 (2014).
50.J. M. D. Coey, “New permanent magnets; manganese compounds,” J. Phys.: Condens. Matter 26(6), 064211 (2014).
51.X. Zhao, M. C. Nguyen, W. Y. Zhang, C. Z. Wang, M. J. Kramer, D. J. Sellmyer, X. Z. Li, F. Zhang, L. Q. Ke, V. P. Antropov, and K. M. Ho, “Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm,” Phys. Rev. Lett. 112, 045502 (2014).
52.L. Steinbeck, M. Richter, and H. Eschrig, “Itinerant-electron magnetocrystalline anisotropy energy of Y Co5 and related compounds,” Phys. Rev. B 63, 184431 (2001).
53.P. Kumar, A. Kashyap, B. Balamurugan, J. E. Shield, D. J. Sellmyer, and R. Skomski, “Permanent magnetism of intermetallic compounds between light and heavy transition-metal elements,” J. Phys.: Condens. Matter 26(6), 064209 (2014).

Data & Media loading...


Article metrics loading...



Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd