Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. U. S. A. 93, 7436-7439 (1996).
2.G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105-114 (2008).
3.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature 473, 66-69 (2011).
4.L. E. Bell, “Cooling, heating, generating power and recovering waste heat with thermoelectric system,” Science 321, 1457-1461 (2008).
5.J. P. Heremans, V. Jovovic, E. S. Toberer, A. Sarmat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, “Enhancement of thermoelectric efficiency in PbTe by distorion of the electronic density of states,” Science 321, 554-557 (2008).
6.J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, “Resonant levels in bulk thermoelectric semiconductors,” Energy Environ. Sci. 5, 5510-5530 (2012).
7.G. D. Mahan, Solid State Phys. 51, 81 (1998).
8.J. Kondo, “Giant thermo-electric power of dilute magnetic alloys,” Prog. Theor. Phys. 34, 372-382 (1965).
9.G. D. Mahan, B. Sales, and J. Sharp, “Thermoelectric materials: New approaches to an old problem,” Phys. Today 50(3), 42 (1997).
10.Y. Ijiri and F. J. DiSalvo, “Thermoelectric properties of RxCe1−xPd3 (R=Y, La0.5Y 0.5, Nd),” Phys. Rev. B 55, 1283 (1998).
11.R. Wolfe, J. H. Wernick, and S. E. Haszko, “Thermoelectric properties of FeSi,” Phys. Lett. 19, 449-450 (1965).
12.B. C. Sales, O. Delaire, M. A. McGuire, and A. F. May, “Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: Evidence for strong electron-phonon coupling,” Phys. Rev. B 83, 125209 (2011).
13.J. M. Tomczak, K. Haule, and G. Kotliar, “Signatures of elecronic correlations in iron silicide,” Proc. Natl. Acad. Sci. U. S. A. 109, 3243-3246 (2012).
14.C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, “Thermoelectric properties of the doped Kondo insulator: NdxCe3−xPt3Sb4,” Phys. Rev. B 58, 16057 (1998).
15.H. Sato et al., “Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd),” Phys. Rev. B 62, 15125 (2000).
16.A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, “Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2,” Europhys. Lett. 80, 17008 (2007).
17.P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “FeSb2: Prototype of huge electron-diffusion thermoelectricity,” Phys. Rev. B 79, 153308 (2009).
18.P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2,” Appl. Phys. Express 2, 091102 (2009).
19.Q. Jie, R. Hu, E. Bozin, A. Llobet, I. Zaliznyak, C. Petrovic, and Q. Li, “Electronic thermoelectric power factor and metal-insulator transition in FeSb2,” Phys. Rev. B 86, 115121 (2012).
20.C. Petrovic, Y. Lee, T. Vogt, N. Dj. Lazarov, S. L. Bud’ko, and P. C. Canfield, “Kondo insulator description of spin state transition in FeSb2,” Phys. Rev. B 72, 045103 (2005).
21.H. Z. M. Pokharel, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, and Z. Ren, “Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2,” Appl. Phys. Lett. 99, 163101 (2011).
22.K. Wang, R. Hu, J. Warren, and C. Petrovic, “Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals,” J. Appl. Phys. 112, 013703 (2012).
23.M. K. H. Zhao, M. Pokharel, S. Chen, T. Dahal, C. Opeil, G. Chen, and Z. Ren, “Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2,” Appl. Phys. Lett. 102, 213111 (2013).
24.A. Bentien, G. K. H. Madsen, S. Johnsen, and B. B. Iversen, “Experimental and theoretical investigations of strongly correlated FeSb2−xSnx,” Phys. Rev. B 74, 205105 (2006).
25.P. Sun, N. Oeschler, S. Johansen, B. B. Iversen, and F. Steglich, “Narrow band gap and enhanced thermoelectricity in FeSb2,” Dalton Trans. 39, 1012-1019 (2010).
26.J. Tomczak, K. Haule, A. Georges, and G. Kotliar, “Thermopower of correlated semiconductors: Application to FeAs2 and FeSb2,” Phys. Rev. B 82, 085104 (2010).
27.M. S. Seehra and S. S. Seehra, “Temperature dependence of the band gap of FeS2,” Phys. Rev. B 12, 6620 (1979).
28.A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Buker, M. Bronold, Ch. Hopfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29, 085104 (1993).
29.G. Willeke, O. Blenk, Ch. Kloc, and E. Bucher, “Preparation and electrical transport of pyrite (FeS2) single crystals,” J. Alloys Compd. 178, 181 (1992).
30.T. Harada, “Transport properties of iron dichalcogenides FeX2 (X=S,Se and Te),” J. Phys. Soc. Jpn. 67, 1352 (1998).
31.A. P. Hammersley, S. O. Svenson, M. Hanfland, and D. Hauserman, “Two-dimensional detector sotware: From real detector to idealised image of two-theta scan,” High Pressure Res. 14, 235 (1996).
32.H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151 (1967).
33.A. C. Larson and R. B. Von Dreele, “General structure analysis system,” Report No. LAUR-86-748, Los Alamos National Laboratory, Los Alamos, NM 87545, 1987.
34.B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210 (2001).
35.H. D. Lutz, B. Muller, T. Schmidt, and T. Stingl, “Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide RuSe2,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 46, 2003 (1990).
36.M. Weinert, E. Wimmer, and A. J. Freeman, “Total-energy all-electron density functional method for bulk solids and surfaces,” Phys. Rev. B. 26, 4571 (1982).
37.P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave 1 Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universitat Wien, Austria, 2001). ISBN 3-9501031-1-2.
38.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
39.M. K. Fuccillo, Q. D. Gibson, M. N. Ali, L. M. Schoop, and R. J. Cava, “Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior,” APL Mater. 1, 062102 (2013).
40.M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039 (1998).
41.J. B. Goodenough, “Energy bands in TX2 compounds with pyrite, marcasite and arsenopyrite structures,” J. Solid State Chem. 5, 144 (1972).
42.G. Brostigen and A. Kjeksus, “Bonding schemes for compounds with the pyrite, marcasite and arsenopyrite type structures,” Acta Chem. Scand. 24, 2993 (1970).
43.C. Petrovic, J. W. Kim, S. L. Bud’ko, A. I. Goldman, P. C. Canfield, W. Choe, and G. J. Miller, “Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2,” Phys. Rev. B 67, 155205 (2003).
44.S. Katsura and T. Imaizumi, “Annealed ising bond-mixture on the pyrite lattices,” Prog. Theor. Phys. 67, 434 (1982).
45.M. Matsuura, Y. Endoh, H. Hiraka, K. Yamada, A. S. Mishchenko, N. Nagaosa, and I. V. Solovyev, “Classical and quantum spin dynamics in the fcc antiferromagnet NiS2 with frustration,” Phys. Rev. B 68, 094409 (2003).
46.X.-L. Gu, F. Lu, D.-Y. Liu, and L.-J. Zou, “Thermoelectric power of single-orbital and two-orbital Hubbard models on triangular lattices,” Physica B 405, 4145 (2010).
47.L.-F. Arsenault, B. S. Shastry, P. Semon, and A.-M. S. Tremblay, “Entropy, frustration and large thermopower of doped Mott insulators on the fcc lattice,” Phys. Rev. B 87, 035126 (2013).
48.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 (2007).
49.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, and Z. F. Ren, “High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science 320, 634 (2008).
50.M. G. Kanatzidis, “Nanostructured thermoelectrics: The new paradigm,” Chem. Mater. 22, 648 (2010).
51.L.-F. C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, “Development of novel thermoelectric materials by reduction of lattice thermal conductivity,” Sci. Technol. Adv. Mater. 11, 044306 (2010).

Data & Media loading...


Article metrics loading...



We report the electronic structure, electric and thermal transport properties of RuIrSe ( ≤ 0.2). RuSe is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe exceeds −200 V/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. RuIrSe shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd