Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4913919
1.
1.G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. U. S. A. 93, 7436-7439 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
2.
2.G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105-114 (2008).
http://dx.doi.org/10.1038/nmat2090
3.
3.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature 473, 66-69 (2011).
http://dx.doi.org/10.1038/nature09996
4.
4.L. E. Bell, “Cooling, heating, generating power and recovering waste heat with thermoelectric system,” Science 321, 1457-1461 (2008).
http://dx.doi.org/10.1126/science.1158899
5.
5.J. P. Heremans, V. Jovovic, E. S. Toberer, A. Sarmat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, “Enhancement of thermoelectric efficiency in PbTe by distorion of the electronic density of states,” Science 321, 554-557 (2008).
http://dx.doi.org/10.1126/science.1159725
6.
6.J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, “Resonant levels in bulk thermoelectric semiconductors,” Energy Environ. Sci. 5, 5510-5530 (2012).
http://dx.doi.org/10.1039/c1ee02612g
7.
7.G. D. Mahan, Solid State Phys. 51, 81 (1998).
http://dx.doi.org/10.1016/s0081-1947(08)60190-3
8.
8.J. Kondo, “Giant thermo-electric power of dilute magnetic alloys,” Prog. Theor. Phys. 34, 372-382 (1965).
http://dx.doi.org/10.1143/PTP.34.372
9.
9.G. D. Mahan, B. Sales, and J. Sharp, “Thermoelectric materials: New approaches to an old problem,” Phys. Today 50(3), 42 (1997).
http://dx.doi.org/10.1063/1.881752
10.
10.Y. Ijiri and F. J. DiSalvo, “Thermoelectric properties of RxCe1−xPd3 (R=Y, La0.5Y 0.5, Nd),” Phys. Rev. B 55, 1283 (1998).
http://dx.doi.org/10.1103/PhysRevB.55.1283
11.
11.R. Wolfe, J. H. Wernick, and S. E. Haszko, “Thermoelectric properties of FeSi,” Phys. Lett. 19, 449-450 (1965).
http://dx.doi.org/10.1016/0031-9163(65)90094-6
12.
12.B. C. Sales, O. Delaire, M. A. McGuire, and A. F. May, “Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: Evidence for strong electron-phonon coupling,” Phys. Rev. B 83, 125209 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125209
13.
13.J. M. Tomczak, K. Haule, and G. Kotliar, “Signatures of elecronic correlations in iron silicide,” Proc. Natl. Acad. Sci. U. S. A. 109, 3243-3246 (2012).
http://dx.doi.org/10.1073/pnas.1118371109
14.
14.C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, “Thermoelectric properties of the doped Kondo insulator: NdxCe3−xPt3Sb4,” Phys. Rev. B 58, 16057 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.16057
15.
15.H. Sato et al., “Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd),” Phys. Rev. B 62, 15125 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15125
16.
16.A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, “Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2,” Europhys. Lett. 80, 17008 (2007).
http://dx.doi.org/10.1209/0295-5075/80/17008
17.
17.P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “FeSb2: Prototype of huge electron-diffusion thermoelectricity,” Phys. Rev. B 79, 153308 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.153308
18.
18.P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2,” Appl. Phys. Express 2, 091102 (2009).
http://dx.doi.org/10.1143/APEX.2.091102
19.
19.Q. Jie, R. Hu, E. Bozin, A. Llobet, I. Zaliznyak, C. Petrovic, and Q. Li, “Electronic thermoelectric power factor and metal-insulator transition in FeSb2,” Phys. Rev. B 86, 115121 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115121
20.
20.C. Petrovic, Y. Lee, T. Vogt, N. Dj. Lazarov, S. L. Bud’ko, and P. C. Canfield, “Kondo insulator description of spin state transition in FeSb2,” Phys. Rev. B 72, 045103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045103
21.
21.H. Z. M. Pokharel, G. Zhu, S. Chen, K. Lukas, Q. Jie, C. Opeil, G. Chen, and Z. Ren, “Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2,” Appl. Phys. Lett. 99, 163101 (2011).
http://dx.doi.org/10.1063/1.3651757
22.
22.K. Wang, R. Hu, J. Warren, and C. Petrovic, “Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals,” J. Appl. Phys. 112, 013703 (2012).
http://dx.doi.org/10.1063/1.4731251
23.
23.M. K. H. Zhao, M. Pokharel, S. Chen, T. Dahal, C. Opeil, G. Chen, and Z. Ren, “Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2,” Appl. Phys. Lett. 102, 213111 (2013).
http://dx.doi.org/10.1063/1.4808094
24.
24.A. Bentien, G. K. H. Madsen, S. Johnsen, and B. B. Iversen, “Experimental and theoretical investigations of strongly correlated FeSb2−xSnx,” Phys. Rev. B 74, 205105 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205105
25.
25.P. Sun, N. Oeschler, S. Johansen, B. B. Iversen, and F. Steglich, “Narrow band gap and enhanced thermoelectricity in FeSb2,” Dalton Trans. 39, 1012-1019 (2010).
http://dx.doi.org/10.1039/b918909b
26.
26.J. Tomczak, K. Haule, A. Georges, and G. Kotliar, “Thermopower of correlated semiconductors: Application to FeAs2 and FeSb2,” Phys. Rev. B 82, 085104 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085104
27.
27.M. S. Seehra and S. S. Seehra, “Temperature dependence of the band gap of FeS2,” Phys. Rev. B 12, 6620 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.6620
28.
28.A. Ennaoui, S. Fiechter, Ch. Pettenkofer, N. Alonso-Vante, K. Buker, M. Bronold, Ch. Hopfner, and H. Tributsch, “Iron disulfide for solar energy conversion,” Sol. Energy Mater. Sol. Cells 29, 085104 (1993).
http://dx.doi.org/10.1016/0927-0248(93)90095-K
29.
29.G. Willeke, O. Blenk, Ch. Kloc, and E. Bucher, “Preparation and electrical transport of pyrite (FeS2) single crystals,” J. Alloys Compd. 178, 181 (1992).
http://dx.doi.org/10.1016/0925-8388(92)90260-G
30.
30.T. Harada, “Transport properties of iron dichalcogenides FeX2 (X=S,Se and Te),” J. Phys. Soc. Jpn. 67, 1352 (1998).
http://dx.doi.org/10.1143/JPSJ.67.1352
31.
31.A. P. Hammersley, S. O. Svenson, M. Hanfland, and D. Hauserman, “Two-dimensional detector sotware: From real detector to idealised image of two-theta scan,” High Pressure Res. 14, 235 (1996).
http://dx.doi.org/10.1080/08957959608201408
32.
32.H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151 (1967).
http://dx.doi.org/10.1107/S0365110X67000234
33.
33.A. C. Larson and R. B. Von Dreele, “General structure analysis system,” Report No. LAUR-86-748, Los Alamos National Laboratory, Los Alamos, NM 87545, 1987.
34.
34.B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210 (2001).
http://dx.doi.org/10.1107/S0021889801002242
35.
35.H. D. Lutz, B. Muller, T. Schmidt, and T. Stingl, “Structure refinement of pyrite-type ruthenium disulfide, RuS2, and ruthenium diselenide RuSe2,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 46, 2003 (1990).
http://dx.doi.org/10.1107/S0108270190001925
36.
36.M. Weinert, E. Wimmer, and A. J. Freeman, “Total-energy all-electron density functional method for bulk solids and surfaces,” Phys. Rev. B. 26, 4571 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.4571
37.
37.P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave 1 Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universitat Wien, Austria, 2001). ISBN 3-9501031-1-2.
38.
38.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39.M. K. Fuccillo, Q. D. Gibson, M. N. Ali, L. M. Schoop, and R. J. Cava, “Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior,” APL Mater. 1, 062102 (2013).
http://dx.doi.org/10.1063/1.4833055
40.
40.M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
41.
41.J. B. Goodenough, “Energy bands in TX2 compounds with pyrite, marcasite and arsenopyrite structures,” J. Solid State Chem. 5, 144 (1972).
http://dx.doi.org/10.1016/0022-4596(72)90022-9
42.
42.G. Brostigen and A. Kjeksus, “Bonding schemes for compounds with the pyrite, marcasite and arsenopyrite type structures,” Acta Chem. Scand. 24, 2993 (1970).
http://dx.doi.org/10.3891/acta.chem.scand.24-2993
43.
43.C. Petrovic, J. W. Kim, S. L. Bud’ko, A. I. Goldman, P. C. Canfield, W. Choe, and G. J. Miller, “Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2,” Phys. Rev. B 67, 155205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155205
44.
44.S. Katsura and T. Imaizumi, “Annealed ising bond-mixture on the pyrite lattices,” Prog. Theor. Phys. 67, 434 (1982).
http://dx.doi.org/10.1143/PTP.67.434
45.
45.M. Matsuura, Y. Endoh, H. Hiraka, K. Yamada, A. S. Mishchenko, N. Nagaosa, and I. V. Solovyev, “Classical and quantum spin dynamics in the fcc antiferromagnet NiS2 with frustration,” Phys. Rev. B 68, 094409 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.094409
46.
46.X.-L. Gu, F. Lu, D.-Y. Liu, and L.-J. Zou, “Thermoelectric power of single-orbital and two-orbital Hubbard models on triangular lattices,” Physica B 405, 4145 (2010).
http://dx.doi.org/10.1016/j.physb.2010.07.003
47.
47.L.-F. Arsenault, B. S. Shastry, P. Semon, and A.-M. S. Tremblay, “Entropy, frustration and large thermopower of doped Mott insulators on the fcc lattice,” Phys. Rev. B 87, 035126 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.035126
48.
48.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 (2007).
http://dx.doi.org/10.1038/nature06381
49.
49.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dresselhaus, G. Chen, and Z. F. Ren, “High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
50.
50.M. G. Kanatzidis, “Nanostructured thermoelectrics: The new paradigm,” Chem. Mater. 22, 648 (2010).
http://dx.doi.org/10.1021/cm902195j
51.
51.L.-F. C. Wan, Y. Wang, N. Wang, W. Norimatsu, M. Kusunoki, and K. Koumoto, “Development of novel thermoelectric materials by reduction of lattice thermal conductivity,” Sci. Technol. Adv. Mater. 11, 044306 (2010).
http://dx.doi.org/10.1088/1468-6996/11/4/044306
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4913919
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4913919
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4913919
2015-03-03
2016-12-06

Abstract

We report the electronic structure, electric and thermal transport properties of RuIrSe ( ≤ 0.2). RuSe is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe exceeds −200 V/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. RuIrSe shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4913919.html;jsessionid=M_coI5aqkMfrVJCxEfpmSRpm.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4913919&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4913919&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4913919'
Top,Right1,Right2,Right3,