Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4913967
1.
1.J. A. Wilson and A. D. Yoffe, Adv. Phys. 28, 193 (1969).
http://dx.doi.org/10.1080/00018736900101307
2.
2.H. Imai, Y. Shimakawa, and Y. Kubo, Phys. Rev. B 64, 241104(R) (2001).
http://dx.doi.org/10.1103/PhysRevB.64.241104
3.
3.M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).
http://dx.doi.org/10.1038/nature13763
4.
4.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
5.
5.X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343 (2014).
http://dx.doi.org/10.1038/nphys2942
6.
6.S. Jobic, J. Alloys Compd. 178, 253 (1992).
http://dx.doi.org/10.1016/0925-8388(92)90269-F
7.
7.N. V. Podberezskaya, S. A. Magarill, N. V. Pervukhina, and S. V. Borisov, J. Struct. Chem. 42, 654 (2001).
http://dx.doi.org/10.1023/A:1013106329156
8.
8.K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
9.
9.D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
10.
10.R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Nat. Nanotechnol. 9, 611 (2014).
http://dx.doi.org/10.1038/nnano.2014.148
11.
11.D. Puotinen and R. E. Newnham, Acta Cryst. 14, 691 (1961).
http://dx.doi.org/10.1107/S0365110X61002084
12.
12.B. E. Brown, Acta. Cryst. 20, 268 (1966).
http://dx.doi.org/10.1107/S0365110X66000513
13.
13.E. Revolinsky and D. J. Beerntsen, J. Phys. Chem. Solids 27, 523 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90195-8
14.
14.M. B. Vellinga, R. De Jonge, and C. Haas, J. Solid State Chem. 2, 299 (1970).
http://dx.doi.org/10.1016/0022-4596(70)90085-X
15.
15.W. G. Dawson and D. W. Bullett, J. Phys. C: Solid State Phys. 20, 6159 (1987).
http://dx.doi.org/10.1088/0022-3719/20/36/017
16.
16.Th. Böker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Phys. Rev. B 64, 235305 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235305
17.
17.B. E. Brown, Acta. Cryst. 20, 264 (1966).
http://dx.doi.org/10.1107/S0365110X66000501
18.
18.M.-H. Whangbo and E. Canadell, J. Am. Chem. Soc. 114, 9587 (1992).
http://dx.doi.org/10.1021/ja00050a044
19.
19.C. Battaglia, H. Cercellier, F. Clerc, L. Despont, M. G. Garnier, C. Koitzsch, and P. Aebi, Phys. Rev. B 72, 195114 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195114
20.
20.P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K software package, see http://www.wien2k.at.
21.
21.K. Hayashi, T. Ikeuchi, H. Takeuchi, and M. Shimakawa, J. Alloys Compd. 219, 161 (1995).
http://dx.doi.org/10.1016/0925-8388(94)05030-9
22.
22.N. Maeda, M. Shimakawa, and K. Hayashi, J. Alloys Compd. 336, 62 (2002).
http://dx.doi.org/10.1016/S0925-8388(01)01893-X
23.
23.M. Shimakawa, K. Kawachi, S. Nishikawa, and K. Hayashi, J. Solid State Chem. 129, 242 (1997).
http://dx.doi.org/10.1006/jssc.1996.7223
24.
24.M. Shimakawa and K. Hayashi, J. Alloys Compd. 259, 219 (1997).
http://dx.doi.org/10.1016/S0925-8388(97)00120-5
25.
25.J. He, K. Hummer, and C. Franchini, Phys. Rev. B 89, 075409 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.075409
26.
26.M. S. Silverman, Inorg. Chem. 6, 1063 (1967).
http://dx.doi.org/10.1021/ic50051a047
27.
27.L. C. Towle, V. Oberbeck, B. E. Brown, and R. E. Stajdohar, Science 154, 895 (1966).
http://dx.doi.org/10.1126/science.154.3751.895
28.
28.R. Clarke, E. Marseglia, and H. P. Hughes, Philos. Mag. B 38, 121 (1978).
http://dx.doi.org/10.1080/13642817808245670
29.
29.H. P. Hughes and R. H. Friend, J. Phys. C: Solid State Phys. 11, L103 (1978).
http://dx.doi.org/10.1088/0022-3719/11/3/004
30.
30.E. Canadell, S. Jobic, R. Brec, J. Rouxel, and M.-H. Whangbo, J. Solid State Chem. 99, 189 (1992).
http://dx.doi.org/10.1016/0022-4596(92)90304-E
31.
31.R. Huisman, F. Kadijk, and F. Jellinek, J. Less-Common Met. 21, 187 (1970).
http://dx.doi.org/10.1016/0022-5088(70)90117-7
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4913967
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4913967
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4913967
2015-03-06
2016-12-11

Abstract

MoTe is a rare transition-metal ditelluride having two kinds of layered polytypes, hexagonal structure with trigonal prismatic Mo coordination and monoclinic structure with octahedral Mo coordination. The monoclinic distortion in the latter is caused by anisotropic metal-metal bonding. In this work, we have examined the Nb doping effect on both polytypes of MoTe and clarified a structural phase diagram for Mo Nb Te containing four kinds of polytypes. A rhombohedral polytype crystallizing in polar space group has been newly identified as a high-temperature metastable phase at slightly Nb-rich composition. Considering the results of thermoelectric measurements and the first-principles calculations, the Nb ion seemingly acts as a hole dopant in the rigid band scheme. On the other hand, the significant interlayer contraction upon the Nb doping, associated with the Te - hybridization, is confirmed especially for the monoclinic phase, which implies a shift of the -band energy level. The origin of the metal-metal bonding in the monoclinic structure is discussed in terms of the electron counting and the Te - hybridization.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4913967.html;jsessionid=dJVWxldEixLMAvdsDU-NCK3N.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4913967&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4913967&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4913967'
Top,Right1,Right2,Right3,