Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4914134
1.
1.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
2.
2.A. N. Tiwari, D. Lincot, and M. Contreras, Prog. Photovoltaics: Res. Appl. 18, 389 (2010).
http://dx.doi.org/10.1002/pip.1010
3.
3.Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
http://dx.doi.org/10.7566/JPSJ.82.102001
4.
4.J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2014).
http://dx.doi.org/10.1038/nmat4153
5.
5.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
6.
6.H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
http://dx.doi.org/10.1021/nl301485q
7.
7.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
8.
8.J. Ye, Y. Zhang, R. Akashi, M. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).
http://dx.doi.org/10.1126/science.1228006
9.
9.M. Shanmugam, T. Bansal, C. A. Durcan, and B. Yu, Appl. Phys. Lett. 100, 153901 (2012).
http://dx.doi.org/10.1063/1.3703602
10.
10.N. Zibouche, A. Kuc, J. Musfeldt, and T. Heine, Ann. Phys. 526, 395 (2014).
http://dx.doi.org/10.1002/andp.201400137
11.
11.S. Lebègue, T. Björkman, M. Klintenberg, R. Nieminen, and O. Eriksson, Phys. Rev. X 3, 031002 (2013).
http://dx.doi.org/10.1103/physrevx.3.031002
12.
12.X. Li and J. Yang, J. Mater. Chem. C 2, 7071 (2014).
http://dx.doi.org/10.1039/C4TC01193G
13.
13.X. Chen, J. Qi, and D. Shi, Phys. Lett. A 379, 60 (2015).
http://dx.doi.org/10.1016/j.physleta.2014.10.042
14.
14.G. Ouvrard, E. Sandre, and R. Brec, J. Solid State Chem. 73, 27 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90049-7
15.
15.R. Brec, Solid State Ionics 22, 3 (1986).
http://dx.doi.org/10.1016/0167-2738(86)90055-X
16.
16.V. Carteaux, F. Moussa, and M. Spiesser, Europhys. Lett. 29, 251 (1995).
http://dx.doi.org/10.1209/0295-5075/29/3/011
17.
17.V. Carteaux, D. Brunet, G. Ouvrard, and G. Andre, J. Phys.: Condens. Matter 7, 69 (1995).
http://dx.doi.org/10.1088/0953-8984/7/1/008
18.
18.H. Ji, R. A. Stokes, L. D. Alegria, E. C. Blomberg, M. A. Tanatar, A. Reijnders, L. M. Schoop, T. Liang, R. Prozorov, K. S. Burch, N. P. Ong, J. R. Petta, and R. J. Cava, J. Appl. Phys. 114, 114907 (2013).
http://dx.doi.org/10.1063/1.4822092
19.
19.J. Pankove, Optical Processes in Semiconductors, Dover Books in Physics (Dover, 1971).
20.
20.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
21.
21.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
22.
22.P. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.
23.H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
24.
24.S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
25.
25.V. Carteaux and G. Ouvrard, J. Magn. Magn. Mater. 94, 127 (1991).
http://dx.doi.org/10.1016/0304-8853(91)90121-P
26.
26.R. E. Marsh, J. Solid State Chem. 77, 190 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90107-7
27.
27.J.-Q. Yan, J.-S. Zhou, J. Cheng, J. Goodenough, Y. Ren, A. Llobet, and R. McQueeney, Phys. Rev. B 84, 214405 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214405
28.
28.J.-Q. Yan, J.-S. Zhou, and J. Goodenough, Phys. Rev. B 69, 134409 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.134409
29.
29.J.-Q. Yan, J.-S. Zhou, and J. Goodenough, Phys. Rev. Lett. 93, 235901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.235901
30.
30.B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).
http://dx.doi.org/10.1126/science.272.5266.1325
31.
31.J.-G. Cheng, J.-S. Zhou, J. Goodenough, Y. Sui, Y. Ren, and M. Suchomel, Phys. Rev. B 83, 064401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064401
32.
32. The typical Raman peaks of CrSiTe3 are shown in the inset of Fig. 6(a). They appear at 101.4, 125.7, and 142.7 cm−1. Our calculated phonon frequencies for these three Raman-active modes are 88.5, 116.1, and 145.5 cm−1, respectively, in reasonable agreement with the measured spectrum.
33.
33.M. Bernasconi, G. Marra, G. Benedek, L. Miglio, M. Jouanne, C. Julien, M. Scagliotti, and M. Balkanski, Phys. Rev. B 38, 12089 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.12089
34.
34.E. Kroumova, M. Aroyo, J. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Phase Transitions 76, 155 (2003).
http://dx.doi.org/10.1080/0141159031000076110
35.
35.D. Karhanek, T. Bucko, and J. Hafner, J. Phys.: Condens. Matter 22, 265006 (2010).
http://dx.doi.org/10.1088/0953-8984/22/26/265006
36.
36.Q.-C. Sun, S. N. Baker, A. D. Christianson, and J. Musfeldt, Phys. Rev. B 84, 014301 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014301
37.
37.L. Vergara, J. Cao, N. Rogado, Y. Wang, R. Chaudhury, R. Cava, B. Lorenz, and J. Musfeldt, Phys. Rev. B 80, 052303 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.052303
38.
38.J. Cao, L. Vergara, J. Musfeldt, A. Litvinchuk, Y. Wang, S. Park, and S.-W. Cheong, Phys. Rev. B 78, 064307 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.064307
39.
39.J. Cao, L. Vergara, J. Musfeldt, A. Litvinchuk, Y. Wang, S. Park, and S.-W. Cheong, Phys. Rev. Lett. 100, 177205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.177205
40.
40.J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath et al., Nature 466, 954 (2010).
http://dx.doi.org/10.1038/nature09331
41.
41.Q.-C. Sun, C. S. Birkel, J. Cao, W. Tremel, and J. L. Musfeldt, ACS Nano 6, 4876 (2012).
http://dx.doi.org/10.1021/nn301276q
42.
42.T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B. Stone, J.-Q. Yan, and D. Mandrus, “Magnetic Correlations in the Quasi-2D Semiconducting Ferromagnet CrSiTe3” (unpublished).
43.
43.C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.205505
44.
44.C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.267602
45.
45.P. Colombet and M. Danot, Solid State Commun. 45, 311 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90886-4
46.
46.K. Motida and S. Miyahara, J. Phys. Soc. Jpn. 28, 1188 (1970).
http://dx.doi.org/10.1143/JPSJ.28.1188
47.
47.J. B. Goodenough, Phys. Rev. 100, 564 (1955).
http://dx.doi.org/10.1103/PhysRev.100.564
48.
48.J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90107-0
49.
49.J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90061-7
50.
50.J. Musfeldt, L. Vergara, T. Brinzari, C. Lee, L. Tung, J. Kang, Y. Wang, J. Schlueter, J. Manson, and M.-H. Whangbo, Phys. Rev. Lett. 103, 157401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.157401
51.
51.S. Basu, L. Martin, Y. Chu, M. Gajek, R. Ramesh, R. Rai, X. Xu, and J. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008).
http://dx.doi.org/10.1063/1.2887908
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4914134
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4914134
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4914134
2015-03-19
2016-12-07

Abstract

CrSiTe has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4914134.html;jsessionid=5c2PjHN7JSqKC9yD61sGK7CX.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4914134&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4914134&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4914134'
Top,Right1,Right2,Right3,