Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4916020
1.
1.For a review, see, A. P. Ramirez, Ann. Rev. Mater. Sci. 24, 453 (1994).
http://dx.doi.org/10.1146/annurev.ms.24.080194.002321
2.
2.For a review of the spin ices, see, S. T. Bramwell and M. J. P. Gingras, Science 294, 1495 (2001).
http://dx.doi.org/10.1126/science.1064761
3.
3.For a review from a chemistry perspective, see, J. E. Greedan, J. Mater. Chem. 11, 37 (2001).
http://dx.doi.org/10.1039/b003682j
4.
4.J. E. Greedan, J. Alloys Compd. 408, 444 (2006).
http://dx.doi.org/10.1016/j.jallcom.2004.12.084
5.
5.J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.53
6.
6.R. M. F. Houtappel, Physica B 16, 425 (1950).
http://dx.doi.org/10.1016/0031-8914(50)90130-3
7.
7.G. H. Wannier, Phys. Rev. 79, 357 (1950).
http://dx.doi.org/10.1103/PhysRev.79.357
8.
8.C. R. Wiebe and J. E. Greedan, Physics in Canada 68, 103 (2012).
9.
9.C. R. Wiebe, J. E. Greedan, and J. S. Gardner, Phys. Rev. B 65, 144413 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144413
10.
10.C. R. Wiebe, J. E. Greedan, P. P. Kyriakou, G. M. Luke, J. S. Gardner, A. Fukaya, I. M. Gat-Malureanu, P. L. Russo, A. T. Savici, and Y. J. Uemura, Phys. Rev. B 68, 134410 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.134410
11.
11.J. P. Carlo, J. P. Clancy, T. Aharen, Z. Yamani, J. P. C. Ruff, J. J. Wagman, G. J. Van Gastel, H. M. L. Noad, G. E. Granroth, J. E. Greedan, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 84, 100404(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.100404
12.
12.M. A. de Vries, A. C. Mclaughlin, and J. W. G. Bos, Phys. Rev. Lett. 104, 177202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.177202
13.
13.E. Kermarrec, C. A. Marjerrison, C. M. Thompson, D. D. Maharaj, K. Levin, S. Kroeker, G. E. Granroth, R. Flacau, Z. Yamani, J. E. Greedan, and B. D. Gaulin, Phys. Rev. B 91, 075133 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.075133
14.
14.M. A. Subramanian and A. W. Sleight, inHandbook of the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner and L. Eyring (Elsevier Science Publishers B. V.), p. 225.
15.
15.M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55-143 (1983).
http://dx.doi.org/10.1016/0079-6786(83)90001-8
16.
16.I. Mirebeau, P. Bonville, and M. Hennion, Phys. Rev. B 76, 184436 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.184436
17.
17.S. A. Rosenkrantz, A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, J. Appl. Phys. 87, 5914 (2000).
http://dx.doi.org/10.1063/1.372565
18.
18.O. Knop, F. Brisse, L. Castelliz, and J. Sutarno, Can. J. Chem. 43, 2812 (1965).
http://dx.doi.org/10.1139/v65-392
19.
19.H. W. J. Blote, R. F. Wielinga, and H. Huiskamp, Physica 43, 549 (1969).
http://dx.doi.org/10.1016/0031-8914(69)90187-6
20.
20.S. T. Bramwell, M. N. Field, M. J. Harris, and I. P. Parkin, J. Phys.: Condens. Matter 12, 483 (2000).
http://dx.doi.org/10.1088/0953-8984/12/4/308
21.
21.H. D. Zhou, S. T. Bramwell, J. G. Cheng, C. R. Wiebe, G. Li, L. Balicas, J. A. Bloxsom, H. J. Silverstein, J. S. Zhou, J. B. Goodenough, and J. S. Gardner, Nat. Commun. 2, 478 (2011).
http://dx.doi.org/10.1038/ncomms1483
22.
22.Z. L. Dun, M. Lee, E. S. Choi, A. M. Hallas, C. R. Wiebe, J. S. Gardner, E. Arrighi, R. S. Freitas, A. M. Arevalo-Lopez, J. P. Attfield, H. D. Zhou, and J. G. Cheng, Phys. Rev. B 89, 064401 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.064401
23.
23.X. Li, W. M. Li, K. Matsubayashi, Y. Sato, C. Q. Jin, Y. Uwatoko, T. Kawae, A. M. Hallas, C. R. Wiebe, A. M. Arevalo-Lopez, J. P. Attfield, J. S. Gardner, R. S. Freitas, H. D. Zhou, and J. G. Cheng, Phys. Rev. B 89, 064409 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.064409
24.
24.A. M. Hallas, J. A. M. Paddison, H. J. Silverstein, A. L. Goodwin, J. R. Stewart, A. R. Wildes, J. G. Cheng, J. S. Zhou, J. B. Goodenough, E. S. Choi, G. Ehlers, J. S. Gardner, C. R. Wiebe, and H. D. Zhou, Phys. Rev. B 86, 134431 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134431
25.
25.A. M. Hallas, J. G. Cheng, A. M. Arevalo-Lopez, H. J. Silverstein, Y. Su, P. M. Sarte, H. D. Zhou, E. S. Choi, J. P. Attfield, G. M. Luke, and C. R. Wiebe, Phys. Rev. Lett. 113, 267205 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.267205
26.
26.A. M. Hallas, A. M. Arevalo-Lopez, A. Z. Sharma, T. Munsie, J. P. Attfield, C. R. Wiebe, and G. M. Luke, Phys. Rev. B 91, 104417 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.104417
27.
27.P. E. R. Blanchard, R. Clements, B. J. Kennedy, C. D. Ling, and E. Reynolds, Inorg. Chem. 51, 13237-13244 (2012).
http://dx.doi.org/10.1021/ic301677b
28.
28.K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S. M. Corish, C. R. Stanek, and B. P. Uberuaga, Nat. Mater. 6, 217-223 (2007).
http://dx.doi.org/10.1038/nmat1842
29.
29.K. A. Ross, Th. Proffen, H. A. Dabkowska, J. A. Quilliam, L. R. Yaraskavitch, J. B. Kycia, and B. D. Gaulin, Phys. Rev. B 86, 174424 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.174424
30.
30.For a review see, R. Xu, W. Pand, and Q. Huo, Modern Inorganic Synthetic Chemistry (Elsevier, 2011).
31.
31.P. J. Bridgeman, J. Phys. Rev. 57, 237 (1940).
http://dx.doi.org/10.1103/PhysRev.57.237
32.
32.D. Walker, M. A. Carpenter, and C. M. Hitch, American Minerologist 75, 1020 (1990).
33.
33.E. Morosan, J. A. Fleitman, Q. Huang, J. W. Lynn, Y. Chen, X. Ke, M. L. Dahlberg, P. Schiffer, C. R. Craley, and R. J. Cava, Phys. Rev. B 77, 224423 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.224423
34.
34.P. W. Anderson, Phys. Rev. 102, 1008 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1008
35.
35.L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
http://dx.doi.org/10.1021/ja01315a102
36.
36.A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999).
http://dx.doi.org/10.1038/20619
37.
37.S. T. Bramwell, M. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko, and T. Fennell, Phys. Rev. Lett. 87, 047205 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.047205
38.
38.A. L. Cornelius and J. S. Gardner, Phys. Rev. B 64, 060406 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.060406
39.
39.C. R. Wiebe, J. S. Gardner, S.-J. Kim, G. M. Luke, A. S. Wills, B. D. Gaulin, J. E. Greedan, I. Swainson, Y. Qiu, and C. Y. Jones, Phys. Rev. Lett. 93, 076403 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.076403
40.
40.B. C. den Hertog and M. J. P. Gingras, Phys. Rev. Lett. 84, 3430 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3430
41.
41.H. D. Zhou, J. G. Cheng, A. M. Hallas, C. R. Wiebe, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, J. S. Gardner, and E. S. Choi, Phys. Rev. Lett. 108, 207206 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.207206
42.
42.H. M. Revell, L. R. Yaraskavitch, J. D. Mason, K. A. Ross, H. M. L. Noad, H. A. Dabkowska, B. D. Gaulin, P. Henelius, and J. B. Kycia, Nat. Phys. 9, 34 (2013).
http://dx.doi.org/10.1038/nphys2466
43.
43.C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42-45 (2008).
http://dx.doi.org/10.1038/nature06433
44.
44.D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J. U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perrty, Science 326, 411-414 (2009).
http://dx.doi.org/10.1126/science.1178868
45.
45.T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, and S. T. Bramwell, Science 326, 415-417 (2009).
http://dx.doi.org/10.1126/science.1177582
46.
46.N. Bjerrum, Kgl. Danske Vid. Selskab, Math. -fys. medd 7, 1-48 (1926).
47.
47.J. S. Gardner, S. R. Dunsiger, B. D. Gaulin, M. J. P. Gingras, J. E. Greedan, R. F. Kiefl, M. D. Lumsden, W. A. MacFarlane, N. P. Raju, J. E. Sonier, I. Swainson, and Z. Tun, Phys. Rev. Lett. 82, 1012 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1012
48.
48.J. S. Gardner, A. Keren, G. Ehlers, C. Stock, E. Segal, J. M. Roper, B. Fak, M. B. Stone, P. R. Hammar, D. H. Reich, and B. D. Gaulin, Phys. Rev. B 68, 180401 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.180401
49.
49.K. Fritsch, K. A. Ross, Y. Qiu, J. R. D. Copley, T. Guidi, R. I. Bewley, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. B 87, 094410 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094410
50.
50.H. R. Moldavian, M. J. P. Gingras, and B. Canals, Phys. Rev. Lett. 98, 157204 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.157204
51.
51.T. Fennell, M. Kenzelmann, B. Roessli, H. Mutka, J. Olivier, M. Ruminy, U. Stuhr, O. Zaharko, L. Bovo, A. Cervellino, M. K. Haas, and R. J. Cava, Phys. Rev. Lett. 112, 017203 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.017203
52.
52.I. Mirebeau, I. N. Goncharenko, P. Cadavez-Peres, S. T. Bramwell, M. J. P. Gingras, and J. S. Gardner, Nature 420, 54-57 (2002).
http://dx.doi.org/10.1038/nature01157
53.
53.J. D. M. Champion, M. J. Harris, P. C. W. Holdsworth, A. S. Wills, G. Balakrishnan, S. T. Bramwell, E. Cizmar, T. Fennell, J. S. Gardner, J. Lago, D. F. McMorrow, M. Orendacova, D. McK. Paul, R. I. Smith, M. T. F. Telling, and A. Wildes, Phys. Rev. B 68, 020401 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.020401
54.
54.A. Poole, A. S. Wills, and E. Levievre-Berna, J. Phys.: Condens. Matter 19, 452201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/45/452201
55.
55.P. A. McClarty, S. H. Curnoe, and M. J. P. Gongras, J. Phys.: Conf. Ser. 145, 012032 (2009).
http://dx.doi.org/10.1088/1742-6596/145/1/012032
56.
56.M. E. Zhitomirsky, M. V. Grozdikova, P. C. W. Holdsworth, and R. Moessner, Phys. Rev. Lett. 109, 077204 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.077204
57.
57.S. E. Palmer and J. T. Chalker, Phys. Rev. B 62, 488 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.488
58.
58.L. Savary, K. A. Ross, B. D. Gaulin, J. P. C. Ruff, and L. Balents, Phys. Rev. Lett. 109, 167201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167201
59.
59.H. D. Zhou, private communication (2014).
60.
60.J. A. Hodges, P. Bonville, A. Forget, A. Yaouanc, P. Dalmas de Reotier, G. Andre, M. Rams, K. Krolas, C. Ritter, P. C. M. Gubbens, C. T. Kaiser, P. C. King, and C. Baines, Phys. Rev. Lett. 88, 077204 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.077204
61.
61.Y. Yasui, M. Soda, S. Iikubo, M. Ito, M. Sato, N. Hamaguchi, T. Matsuhida, N. Wada, T. Takeuchi, N. Aso, and K. Kakurai, J. Phys. Soc. Jpn. 72, 3014 (2003).
http://dx.doi.org/10.1143/JPSJ.72.3014
62.
62.K. A. Ross, J. P. C. Ruff, C. P. Adams, J. S. Gardner, H. A. Dabkowska, Y. Qui, J. R. D. Copley, and B. D. Gaulin, Phys. Rev. Lett. 103, 227202 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.227202
63.
63.K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011).
http://dx.doi.org/10.1103/physrevx.1.021002
64.
64.J. A. Hodges, P. Bonville, A. Forget, J. P. Sanchez, P. Vulliet, M. Rams, and K. Krolas, Eur. Phys. J. B 33, 173 (2003).
http://dx.doi.org/10.1140/epjb/e2003-00154-y
65.
65.K. A. Ross, Y. Qui, J. R. D. Copley, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. Lett. 112, 057201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.057201
66.
66.L. J. Chang, S. Onoda, Y. Su, Y. J. Kao, K. D. Tsuei, Y. Yasui, K. Kakurai, and M. R. Lees, Nat. Commun. 3, 992 (2012).
http://dx.doi.org/10.1038/ncomms1989
67.
67.J. R. D. Thompson, P. A. McClarty, and M. J. P. Gingras, J. Phys.: Condens. Matter 23, 164219 (2011).
http://dx.doi.org/10.1088/0953-8984/23/16/164219
68.
68.H. D. Zhou, C. R. Wiebe, J. A. Janik, L. Balicas, Y. J. Jo, Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys. Rev. Lett. 101, 227204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.227204
69.
69.S. M. Koohpayeh, J. J. Wen, B. A. Trump, C. L. Broholm, and T. M. McQueen, J. Phys.: Condens. Matter 402, 291-298 (2014).
70.
70.J. D. Cashion, A. H. Cooke, M. J. M. Leask, T. L. Thorpe, and M. R. Wells, J. Mater. Sci. 3, 402 (1968).
http://dx.doi.org/10.1007/BF00550984
71.
71.N. P. Raju, M. Dion, M. J. P. Gingras, T. E. Mason, and J. E. Greedan, Phys. Rev. B 59, 14489 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.14489
72.
72.O. A. Petrenko, C. Ritter, M. Yethiraj, and D. McK. Paul, Phys. Rev. Lett. 80, 4570 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4570
73.
73.J. R. Stewart, G. Ehlers, A. S. Wills, S. T. Bramwell, and J. S. Gardner, J. Phys.: Condens. Matter 18, L321 (2004).
http://dx.doi.org/10.1088/0953-8984/16/28/L01
74.
74.A. M. Durand, P. Klavins, and L. R. Corruccini, J. Phys.: Condens. Matter 20, 235208 (2008).
http://dx.doi.org/10.1088/0953-8984/20/23/235208
75.
75.J. P. Attfield, private communication (2014).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4916020
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4916020
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4916020
2015-04-15
2016-12-05

Abstract

Pyrochlore structures, of chemical formula ABO (A and B are typically trivalent and tetravalent ions, respectively), have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for new pyrochlore materials, it is the R/R cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ R/R ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure), metastable pyrochlores exist up to R/R = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4916020.html;jsessionid=2duhYhI-_GN50LB6DK25dy8K.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4916020&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4916020&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4916020'
Top,Right1,Right2,Right3,