Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
2.A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).
3.G. B. Jan-Willem and A. D. Ruth, J. Phys.: Condens. Matter 26, 433201 (2014).
4.W. J. Xie, A. Weidenkaff, X. F. Tang, Q. J. Zhang, J. Poon, and T. M. Tritt, Nanomaterials 2, 379 (2012).
5.S. Chen and Z. Ren, Mater. Today 16, 387 (2013).
6.M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).
7.M. Schwall, B. Balke, and M. Köhne, U.S. patent application 20140127070 (08 May 2014).
8.S. Sakurada, N. Shutoh, and S. Hirono, U.S. patent application US2005/0217715 A1 (06 October 2005).
9.N. Shutoh, S. Sakurada, N. Kondo, and N. Takezawa, U.S. patent application US20050172994 A1 (11 August 2005).
10.J. Krez, B. Balke, C. Felser, W. Hermes, and M. Schwind, “Long-term stability of phase-separated Half-Heusler compounds” (2015); e-print arXiv:1502.01828 [cond-mat.mtrl-sci].
11.X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano Lett. 11, 556 (2011).
12.X. Yan, W. S. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Z. Wang, D. Z. Wang, G. Chen, and Z. F. Ren, Energy Environ. Sci. 5, 7543 (2012).
13.X. Yan, W. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen, and Z. F. Ren, Adv. Energy Mater. 3, 1195 (2013).
14.E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014).
15.T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Jpn. J. Appl. Phys., Part 2 46, L673 (2007).
16.V. Ponnambalam, P. N. Alboni, J. Edwards, T. M. Tritt, S. R. Culp, and S. J. Poon, J. Appl. Phys. 103, 063716 (2008).
17.P. Maji, J. P. A. Makongo, X. Zhou, H. Chi, C. Uher, and P. F. P. Poudeu, J. Solid State Chem. 202, 70 (2013).
18.F. F. Ferreira, E. Granado, W. Carvalho, Jr., S. W. Kycia, D. Bruno, and R. Droppa, Jr., J. Synchrotron Radiat. 13, 46 (2006).
19.E. Rausch, S. Ouardi, U. Burkhardt, C. Felser, J. M. Stahlhofen, and B. Balke, “High thermoelectric figure of merit in p-type Half-Heuslers by intrinsic phase separation” (2015); e-print arXiv:1502.03336 [cond-mat.mtrl-sci].
20.H. C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, J. Phys. D: Appl. Phys. 40, 1587 (2007).
21.B. Balke, S. Ouardi, T. Graf, J. Barth, C. G. F. Blum, G. H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).
22.H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, APL Mater. 3, 041506 (2015).
23.J. Krez, J. Schmitt, G. J. Snyder, C. Felser, W. Hermes, and M. Schwind, J. Mater. Chem. A 2, 13513 (2014).
24.S. R. Culp, J. W. Simonson, S. J. Poon, V. Ponnambalam, J. Edwards, and T. M. Tritt, Appl. Phys. Lett. 93, 022105 (2008).

Data & Media loading...


Article metrics loading...



The carrier concentration in the -type half-Heusler compound TiZrHfCoSbSn was optimized, which is a fundamental approach to enhance the performance of thermoelectric materials. The optimum carrier concentration is reached with a substitution level = 0.15 of Sn, which yields the maximum power factor, 2.69 × 10−3 W m−1 K−2, and the maximum = 0.8. This is an enhancement of about 40% in the power factor and the figure of merit compared to samples with = 0.2. To achieve low thermal conductivities in half-Heusler compounds, intrinsic phase separation is an important key point. The present work addresses the influence of different preparation procedures on the quality and reproducibility of the samples, leading to the development of a reliable fabrication method.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd