Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. S. Padamsee, IEEE. Trans. Appl. Supercond. 15, 2432 (2005).
2.A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).
3.G. Ciovati, in Proceedings of the IPAC2013, Shanghai, China, 16 May 2013, p.THYB201.
4.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
5.X. X. Xi, Supercond. Sci. Technol. 22, 043001 (2009).
6.M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karpinski, A. Wisniewski, and H. W. Weber, Phys. Rev. B 66, 052505 (2002).
7.F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks, and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001).
8.B. B. Jin, T. Dahm, C. Iniotakis, A. I. Gubin, E. M. Choi, H. J. Kim, S. I. Lee, W. N. Kang, S. F. Wang, Y. L. Zhou, A. V. Pogrebnyakov, J. M. Redwing, X. X. Xi, and N. Klein, Supercond. Sci. Technol. 18, L1 (2005).
9.J. P. Turneaure, J. Halbritter, and H. A. Schwettman, J. Supercond. 4, 341 (1991).
10.H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Particle Accelerators (Wiley, New York, 1998).
11.E. W. Collings, M. D. Sumption, and T. Tajima, Supercond. Sci. Technol. 17, S595 (2004).
12.D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru, and M. Haas, Nature 410, 186 (2001).
13.B. Piosczyk, P. Kneisel, O. Stolz, and J. Halbritter, IEEE Trans. Nucl. Sci. 20, 108 (1973).
14.M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
15.C. Z. Antoine, S. Berry, S. Bouat, J. F. Jacquot, J. C. Villegier, G. Lamura, and A. Gurevich, Phys. Rev. Spec. Top.–Accel. Beams 13, 121001 (2010).
16.S. Posen, M. U. Liepe, G. Catelani, J. P. Sethna, and M. K. Transtrum, “Response to comment on theoretical RF field limits of multilayer coating structures of superconducting resonator cavities,” eprint arXiv:1310.4479 (2013).
17.A. Gurevich, AIP Adv. 5, 017112 (2015).
18.L. Lyard, T. Klein, J. Marcus, R. Brusetti, C. Marcenat, M. Konczykowski, V. Mosser, K. Kim, B. Kang, H. Lee, and S. Lee, Phys. Rev. B 70, 180504 (2004).
19.S. L. Li, H. H. Wen, Z. W. Zhao, Y. M. Ni, Z. A. Ren, G. C. Che, H. P. Yang, Z. Y. Liu, and Z. X. Zhao, Phys. Rev. B 64, 094522 (2001).
20.Y. Feng, G. Yan, Y. Zhao, A. K. Pradhan, C. F. Liu, P. X. Zhang, and L. Zhou, J. Phys.: Condens. Matter 15, 6395 (2003).
21.D. B. Beringer, C. Clavero, T. Tan, X. X. Xi, W. M. Roach, and R. A. Lukaszew, IEEE Trans. Appl. Supercond. 23, 7500604 (2013).
22.C. Zhuang, T. Tan, A. Krick, Q. Lei, K. Chen, and X. X. Xi, J. Supercond. Novel Magn. 26, 1563 (2013).
23.M. A. Wolak, T. Tan, A. Krick, E. Johnson, M. Hambe, K. Chen, and X. X. Xi, Phys. Rev. STAB 17, 012001 (2014).
24.X. H. Zeng, A. V. Pogrebnyakov, A. Kotcharov, J. E. Jones, X. X. Xi, E. M. Lysczek, J. M. Redwing, S. Y. Xu, J. Lettieri, D. G. Schlom, W. Tian, X. Q. Pan, and Z. K. Liu, Nat. Mater. 1, 35 (2002).
25.ACMS is a magnetometer manufactured by Quantum Design which can conduct magnetic momentum measurements using extraction method, see
26.Y. Matsuda, Y. Koyama, K. Tashiro, and H. Fujiyama, Thin Solid Films 435, 154 (2003).
27.A. V. Pogrebnyakov, J. M. Redwing, S. Raghavan, V. Vaithyanathan, D. G. Schlom, S. Y. Xu, Q. Li, D. A. Tenne, A. Soukiassian, X. X. Xi, M. D. Johannes, D. Kasinathan, W. E. Pickett, J. S. Wu, and J. C. H. Spence, Phys. Rev. Lett. 93, 147006 (2004).
28.C. Zhuang, T. Tan, Y. Wang, S. Bai, X. Ma, H. Yang, G. Zhang, Y. He, H. Wen, X. X. Xi, Q. Feng, and Z. Gan, Supercond. Sci. Tech. 22, 025002 (2009).
29.A. A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O. Jepsen, Phys. Rev. B 66, 054524 (2002).
30.G. Stejic, A. Gurevich, E. Kadyrov, D. Christen, R. Joynt, and D. C. Larbalestier, Phys. Rev. B 49, 1274 (1994).
31.A. A. Abrikosov, Sov. Phys. JETP 19, 988 (1964), available at
32.D. Cunnane, C. Zhuang, K. Chen, X. X. Xi, J. Yong, and T. R. Lemberger, Appl. Phys. Lett. 102, 072603 (2013).
33.Z. X. Ye, Q. Li, Y. F. Hu, A. V. Pogrebnyakov, Y. Cui, X. X. Xi, and J. M. Redwing, Appl. Phys. Lett. 85, 5284 (2004).
34.D. Saint-James and P. G. Gennes, Phys. Lett. 7, 306 (1963).
35.C. Böhmer, G. Brandstätter, and H. W. Weber, Supercond. Sci. Technol. 10, A1 (1997).

Data & Media loading...


Article metrics loading...



For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgBfilms, including the thickness dependence of the lower critical field. MgBthin films were fabricated by hybrid physical-chemical vapor deposition on (0001) SiC substrate either directly (for epitaxialfilms) or with a MgO buffer layer (for polycrystalline films). When the film thickness decreased from 300 nm to 100 nm, at 5 K increased from around 600 Oe to 1880 Oe in epitaxialfilms and to 1520 Oe in polycrystalline films. The result is promising for using MgB/MgO multilayers to enhance the vortex penetration field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd