Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/4/10.1063/1.4917387
1.
1.J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, Nature 422, 599-602 (2003).
http://dx.doi.org/10.1038/nature01551
2.
2.M. Teicher, R. Beserman, M. V. Klein, and H. Morkoç, Phys. Rev. B 29, 4652 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.4652
3.
3.S. R. Kodigala, Cu(In1−xGax)Se2Based Thin Film Solar Cells, Thin Films and Nanostructures, 1st ed. (Academic Press, 2010).
4.
4.T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39, 1 (2011).
http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
5.
5.F. Heusler, W. Starck, and E. Haupt, Verh. DPG 5, 220 (1903).
6.
6.F. Heusler, Verh. DPG 5, 219 (1903).
7.
7.M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
8.
8.S. Chadov, X. L. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, Nat. Mater. 9, 541 (2010).
http://dx.doi.org/10.1038/nmat2770
9.
9.H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Nat. Mater. 9, 546 (2010).
http://dx.doi.org/10.1038/nmat2771
10.
10.L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096407
11.
11.R. A. de Groot, F. M. Mueller, P. G. v. Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
12.
12.J. Kübler, A. R. William, and C. B. Sommers, Phys. Rev. B 28, 1745 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1745
13.
13.Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, edited by Pierre Villars and Karin Cenzual, 2nd ed. (ASM International, Materials Park, Ohio, 2009).
14.
14.Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, Phys. Rev. Lett. 79, 1909 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1909
15.
15.I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174429
16.
16.I. Galanakis, P. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys. 39, 765 (2006).
http://dx.doi.org/10.1088/0022-3727/39/5/S01
17.
17.H. C. Kandpal et al., J. Phys. D: Appl. Phys. 40, 1507 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/S01
18.
18.S. Wurmehl et al., Phys. Rev. B 72, 184434 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184434
19.
19.C. G. F. Blum et al., Appl. Phys. Lett. 95, 161903 (2009).
http://dx.doi.org/10.1063/1.3242370
20.
20.J. Kübler, J. Phys. Condens. Matter 18, 9795 (2006).
http://dx.doi.org/10.1088/0953-8984/18/43/003
21.
21.J. Kübler, G. H. Fecher, and C. Felser, Phys. Rev. B 76, 024414 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024414
22.
22.H. C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, J. Phys. D: Appl. Phys. 40, 1587 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/S13
23.
23.C. Felser, G. H. Fecher, and B. Balke, Angew. Chem., Int. Ed. 46, 668 (2007).
http://dx.doi.org/10.1002/anie.200601815
24.
24.T. Block, C. Felser et al., J. Solid State Chem. 176, 646 (2003).
http://dx.doi.org/10.1016/j.jssc.2003.07.002
25.
25.K. Inomata, S. Okamura, R. Goto, and N. Yezuka, Jpn. J. Appl. Phys., Part 2 32, L419 (2003).
http://dx.doi.org/10.1143/JJAP.42.L419
26.
26.H. X. Liu et al., Appl. Phys. Lett. 101, 132418 (2012).
http://dx.doi.org/10.1063/1.4755773
27.
27.M. Jourdan et al., Nat. Commun. 5, 3974 (2014).
http://dx.doi.org/10.1038/ncomms4974
28.
28.S. Chadov et al., Phys. Rev. Lett. 107, 047202 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047202
29.
29.C. Jiang, M. Venkatesan, and J. M. D. Coey, Solid State Commun. 118, 513 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00151-X
30.
30.S. Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys.: Condens. Matter 18, 6171 (2006).
http://dx.doi.org/10.1088/0953-8984/18/27/001
31.
31.B. Balke, G. H. Fecher, J. Winterlik, and C. Felser, Appl. Phys. Lett. 90, 152504 (2007).
http://dx.doi.org/10.1063/1.2722206
32.
32.I. Galanakis, K. Özdoğan, E. Şaşıoğlu, and B. Aktaş, Phys. Status Solidi A 205, 1036 (2008).
http://dx.doi.org/10.1002/pssa.200776454
33.
33.S. Ouardi, G. H. Fecher, J. Kübler, and C. Felser, Phys. Rev. Lett. 110, 100401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.100401
34.
34.L. Wollmann et al., Phys. Rev. B 90, 214420 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214420
35.
35.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
36.
36.L. Berger, Phys. Rev. B. 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
37.
37.D. Weller et al., IEEE Trans. Magn. 36, 10 (2000).
http://dx.doi.org/10.1109/20.824418
38.
38.J. M. D. Coey, J. Phys.: Condens. Matter 26, 064211 (2014).
http://dx.doi.org/10.1088/0953-8984/26/6/064211
39.
39.P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. Part B 49, 295 (1984).
http://dx.doi.org/10.1080/13642817408246515
40.
40.J. Winterlik et al., Phys. Rev. B 77, 054406 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.054406
41.
41.E. Kren and G. Kadar, Solid State Commun. 8, 1653 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90484-9
42.
42.F. Wu, S. Mizukami, D. Watanabe, H. Naganuma, M. Oogane, Y. Ando et al., Appl. Phys. Lett. 94, 122503 (2009).
http://dx.doi.org/10.1063/1.3108085
43.
43.M. Glas et al., J. Magn. Magn. Mater. 333, 134 (2013).
http://dx.doi.org/10.1016/j.jmmm.2012.12.040
44.
44.A. Köhler et al., Appl. Phys. Lett. 103, 162406 (2013).
http://dx.doi.org/10.1063/1.4825278
45.
45.C. E. V. Barbosa, S. Ouardi, T. Kubota, S. Mizukami, G. H. Fecher, T. Miyazaki, X. Kzina, E. Ikenaga, and C. Felser, J. Appl. Phys. 116, 034508 (2014).
http://dx.doi.org/10.1063/1.4890582
46.
46.T. Kubota et al., Appl. Phys. Express 4, 043002 (2011).
http://dx.doi.org/10.1143/APEX.4.043002
47.
47.T. Kubota et al., Appl. Phys. Express 5, 043003 (2012).
http://dx.doi.org/10.1143/APEX.5.043003
48.
48.S. Mizukami et al., Phys. Rev. Lett. 106, 117201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.117201
49.
49.J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2009).
50.
50.H. Kurt, K. Rode, P. Stamenov, M. Venkatesan, Y.-C. Lau, E. Fonda, and J. M. D. Coey, Phys. Rev. Lett. 112, 027201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.027201
51.
51.A. K. Nayak et al., “Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias,” Nat. Mater. (published online, 2015).
http://dx.doi.org/10.1038/NMAT4248
52.
52.P. Entel et al., J. Phys. D: Appl. Phys. 39, 865 (2006).
http://dx.doi.org/10.1088/0022-3727/39/5/S13
53.
53.P. J. Brown et al., J. Phys.: Condens. Matter 11, 4715 (1999).
http://dx.doi.org/10.1088/0953-8984/11/24/312
54.
54.J. Winterlik et al., Adv. Mater. 24, 6283 (2012).
http://dx.doi.org/10.1002/adma.201201879
55.
55.G. D. Liu et al., Appl. Phys. Lett. 87, 262504 (2005).
http://dx.doi.org/10.1063/1.2158507
56.
56.G. D. Liu et al., Phys. Rev. B 74, 054435 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.054435
57.
57.J. C. Suits, Solid State Commun. 18, 423-425 (1976).
http://dx.doi.org/10. 1016/0038-1098(76)90040-5
58.
58.S. S. P. Parkin, private communication (2014).
59.
59.A. K. Nayak, C. S. Mejia, Y. Skourski, C. Felser, and M. Nicklas, Phys. Rev. B 90, 220408(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.90.220408
60.
60.A. K. Nayak et al., Phys. Rev. Lett. 110, 127204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.127204
61.
61.O. Meshcheriakova et al., Phys. Rev. Lett. 113, 087203 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.087203
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/4/10.1063/1.4917387
Loading
/content/aip/journal/aplmater/3/4/10.1063/1.4917387
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/4/10.1063/1.4917387
2015-04-13
2016-09-27

Abstract

Heusler compounds are a remarkable class of materials with more than 1000 members and a wide range of extraordinary multi-functionalities including halfmetallic high-temperature ferri- and ferromagnets, multi-ferroics, shape memory alloys, and tunable topological insulators with a high potential for spintronics, energy technologies, and magneto-caloric applications. The tunability of this class of materials is exceptional and nearly every functionality can be designed. Co-Heusler compounds show high spin polarization in tunnel junction devices and spin-resolved photoemission. Manganese-rich Heusler compounds attract much interest in the context of spin transfer torque, spin Hall effect, and rare earth free hard magnets. Most Mn-Heusler compounds crystallize in the inverse structure and are characterized by antiparallel coupling of magnetic moments on Mn atoms; the ferrimagnetic order and the lack of inversion symmetry lead to the emergence of new properties that are absent in ferromagnetic centrosymmetric Heusler structures, such as non-collinear magnetism, topological Hall effect, and skyrmions. Tetragonal Heusler compounds with large magneto crystalline anisotropy can be easily designed by positioning the Fermi energy at the van Hove singularity in one of the spin channels. Here, we give a comprehensive overview and a prospective on the magnetic properties of Heusler materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/4/1.4917387.html;jsessionid=TYYDu0ccQkgUeP8afJVVdIMv.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/4/10.1063/1.4917387&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/4/10.1063/1.4917387&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/4/10.1063/1.4917387'
Top,Right1,Right2,Right3,