Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/5/10.1063/1.4921160
1.
1.J. S. Humbert, I. Chopra, R. S. Fearing, R. J. Full, R. J. Wood, and M. H. Dickinson, “Micro- and nanotechnology sensors, systems, and applications,” Proc. SPIE 7318, 73180L (2009).
http://dx.doi.org/10.1117/12.820881
2.
2.J. K. Shang, S. A. Combes, B. M. Finio, and R. J. Wood, Bioinspiration Biomimetics 4(3), 036002 (2009).
http://dx.doi.org/10.1088/1748-3182/4/3/036002
3.
3.R. J. Wood, S. Avadhanula, R. Sahai, E. Steltz, and R. S. Fearing, J. Mech. Des. 130(5), 052304 (2008).
http://dx.doi.org/10.1115/1.2885509
4.
4.L. J. Gibson, M. F. Ashby, and B. A. Harley, Cellular Materials in Nature and Medicine (Cambridge University Press, New York, 2010).
5.
5.J. W. Galusha, M. R. Jorgensen, and M. H. Bartl, Adv. Mater. 22(1), 107 (2010).
http://dx.doi.org/10.1002/adma.200902852
6.
6.D. Zenkert, The Handbook of Sandwich Construction (Engineering Materials Advisory Services, Ltd., London, UK, 1997).
7.
7.F. Arias, P. J. A. Kenis, B. Xu, T. Deng, O. J. A. Schueller, G. M. Whitesides, Y. Sugimura, and A. G. Evans, J. Mater. Res. 16(02), 597 (2001).
http://dx.doi.org/10.1557/JMR.2001.0086
8.
8.A. E. Markaki and T. W. Clyne, Acta Mater. 49(9), 1677 (2001).
http://dx.doi.org/10.1016/S1359-6454(01)00072-6
9.
9.A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, Adv. Mater. 19(22), 3892 (2007).
http://dx.doi.org/10.1002/adma.200700797
10.
10.A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, Acta Mater. 55(20), 6724 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.08.036
11.
11.V. S. Deshpande and N. A. Fleck, Int. J. Solids Struct. 38(36–37), 6275 (2001).
http://dx.doi.org/10.1016/S0020-7683(01)00103-2
12.
12.H. G. Allen, Analysis and Design of Structural Sandwich Panels (Pergamon Press, Oxford, UK, 1969).
13.
13.A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, Acta Mater. 56(6), 1209 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.11.018
14.
14.I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials (Oxford University Press, New York, 1994).
15.
15.Y. Collette and Y. Siarry, Multiobjective Optimization: Principles and Case Studies (Springer, New York, 2004).
16.
16.C. S. Roper, Int. J. Heat Fluid Flow 32, 239 (2011).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.07.002
17.
17.X. Li, G. Li, C. Wang, and M. You, Appl. Compos. Mater. 19(3-4), 315 (2012).
http://dx.doi.org/10.1007/s10443-011-9204-0
18.
18.T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter, Science 334(6058), 962 (2011).
http://dx.doi.org/10.1126/science.1211649
19.
19.K. J. Maloney, C. S. Roper, A. J. Jacobsen, W. B. Carter, L. Valdevit, and T. A. Schaedler, APL Mater. 1(2), 022106 (2013).
http://dx.doi.org/10.1063/1.4818168
20.
20.A. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, Int. J. Impact Eng. 37(9), 947 (2010).
http://dx.doi.org/10.1016/j.ijimpeng.2010.03.007
21.
21.K. J. Maloney, K. D. Fink, T. A. Schaedler, J. A. Kolodziejska, A. J. Jacobsen, and C. S. Roper, Int. J. Heat Mass Transfer 55(9–10), 2486 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.011
22.
22.C. S. Roper, R. C. Schubert, K. J. Maloney, D. Page, C. J. Ro, S. S. Yang, and A. J. Jacobsen, Adv. Mater. 27, 2479 (2015).
http://dx.doi.org/10.1002/adma.201403549
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/5/10.1063/1.4921160
Loading
/content/aip/journal/aplmater/3/5/10.1063/1.4921160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/5/10.1063/1.4921160
2015-05-13
2016-09-26

Abstract

We achieve the benefits of large-scale structural hierarchy at the micro-scale by utilizing a self-propagating photopolymer waveguide process to form ultra-thin sandwich structures. A single step forms the microlattice sandwich core and bonds the core to both facesheets, minimizing adhesive mass and manufacturing time, with core thicknesses <2 mm, facesheet thicknesses ranging from 12.7 to 300 μm, areal densities 0.030–0.041 g cm−2, and flexural rigidity per unit width up to 0.62 Nm. This work extends the lightweighting benefit of sandwich structures to lower thicknesses and areal densities that were previously the exclusive domain of monolithic materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/5/1.4921160.html;jsessionid=SU8MoZsC5iCa2loYspY61-0V.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/5/10.1063/1.4921160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/5/10.1063/1.4921160&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/5/10.1063/1.4921160'
Top,Right1,Right2,Right3,