Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, C. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2.W. Zhao et al., ACS Nano 7, 791 (2013).
3.H. J. Conley et al., Nano Lett. 13, 3626 (2013).
4.Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
5.A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
6.C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
7.K. Mak, C. Lee, J. Hone, J. Shan, and T. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
8.J. N. Coleman et al., Science 331, 568 (2011).
9.R. J. Smith et al., Adv. Mater. 23, 3944 (2011).
10.Y.-H. Lee et al., Adv. Mater. 24, 2320 (2012).
11.X. Wang, H. Feng, Y. Wu, and L. Jiao, J. Am. Chem. Soc. 135, 5304 (2013).
12.N. Perea-López et al., 2D Mater. 1, 011004 (2014).
13.T. A. J. Loh and D. H. C. Chua, ACS Appl. Mater. Interfaces 6, 15966 (2014).
14.C. R. Serrao et al., Appl. Phys. Lett. 106, 052101 (2015).
15.R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014).
16.H. Terrones et al., Sci. Rep. 4, 4215 (2014).
17.K. M. Mccreary et al., Adv. Funct. Mater. 24, 6449 (2014).
18.Q. Ji et al., Nano Lett. 13, 3870 (2013).
19.M. Amani, M. L. Chin, A. L. Mazzoni, R. A. Burke, S. Najmaei, P. M. Ajayan, J. Lou, and M. Dubey, Appl. Phys. Lett. 104, 203506 (2014).
20.E. S. Kadantsev and P. Hawrylak, Solid State Commun. 152, 909 (2012).
21.D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. Lopez-sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, ACS Nano 9, 4611 (2014).
22.L. Britnell et al., Science 340, 1311 (2013).

Data & Media loading...


Article metrics loading...



We are reporting the growth of single layer and few-layer MoS films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS target by 50 laser pulses (energy density: 1.5 J/cm2) was found to result in the formation of a monolayer of MoS as shown by AFM results. In the Raman spectrum, A and E1 peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS films were prepared. It was found that as the number of monolayers (n) in the MoS films increases, the spacing between the A and E1 Raman peaks (Δf) increases following an empirical relation, .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd