Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4907771
1.
1.T. Senthil, Phys. Rev. B 78(4), 045109 (2008).
http://dx.doi.org/10.1103/physrevb.78.045109
2.
2.X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70(11), 1666 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1666
3.
3.B. Kyung and A. M. S. Tremblay, Phys. Rev. Lett. 97(4), 046402 (2006).
http://dx.doi.org/10.1103/physrevlett.97.046402
4.
4.H. Morita, S. Watanabe, and M. Imada, J. Phys. Soc. Jpn. 71(9), 2109 (2002).
http://dx.doi.org/10.1143/JPSJ.71.2109
5.
5.M. L. Medarde, J. Phys.: Condens. Matter 9(8), 1679 (1997).
http://dx.doi.org/10.1088/0953-8984/9/8/003
6.
6.G. Catalan, Phase Transitions 81(7-8), 729 (2008).
http://dx.doi.org/10. 1080/01411590801992463
7.
7.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70(4), 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
8.
8.J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C. Niedermayer, Phys. Rev. B 45(14), 8209 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8209
9.
9.J. Bardeen, Phys. Rev. Lett. 6(2), 57 (1961).
http://dx.doi.org/10.1103/PhysRevLett.6.57
10.
10.F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schonberger, Phys. Rev. B 74(12), 125106 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.125106
11.
11.A. J. Hauser, E. Mikheev, N. E. Moreno, T. A. Cain, J. Hwang, J. Y. Zhang, and S. Stemmer, Appl. Phys. Lett. 103(18), 182105 (2013).
http://dx.doi.org/10.1063/1.4828557
12.
12.J. Son, P. Moetakef, J. M. LeBeau, D. Ouellette, L. Balents, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 96(6), 062114 (2010).
http://dx.doi.org/10.1063/1.3309713
13.
13.J. S. Zhou, J. B. Goodenough, and B. Dabrowski, Phys. Rev. B 67(2), 020404 (2003).
http://dx.doi.org/10.1103/physrevb.67.020404
14.
14.J. S. Zhou, J. B. Goodenough, B. Dabrowski, P. W. Klamut, and Z. Bukowski, Phys. Rev. B 61(7), 4401 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.4401
15.
15.F. Z. He, B. O. Wells, Z. G. Ban, S. P. Alpay, S. Grenier, S. M. Shapiro, W. D. Si, A. Clark, and X. X. Xi, Phys. Rev. B 70(23), 235405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235405
16.
16.X. K. Lian, F. Chen, X. L. Tan, P. F. Chen, L. F. Wang, G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 103(17), 172110 (2013).
http://dx.doi.org/10.1063/1.4826678
17.
17.P. Laffez, O. I. Lebedev, P. Ruello, R. Desfeux, G. Banerjee, and F. Capon, Eur. Phys. J.: Appl. Phys. 25(1), 25 (2004).
http://dx.doi.org/10.1051/epjap:2003087
18.
18.G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B 62(12), 7892 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7892
19.
19.J. A. Liu, M. Kareev, B. Gray, J. W. Kim, P. Ryan, B. Dabrowski, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. 96(23), 233110 (2010).
http://dx.doi.org/10.1063/1.3451462
20.
20.Y. Kumar, R. J. Choudhary, S. K. Sharma, M. Knobel, and R. Kumar, Appl. Phys. Lett. 101(13), 132101 (2012).
http://dx.doi.org/10.1063/1.4754593
21.
21.Y. Kumar, R. J. Choudhary, and R. Kumar, AIP Conf. Proc. 1447, 1019 (2012).
http://dx.doi.org/10.1063/1.4710352
22.
22.Y. Kumar, R. J. Choudhary, and R. Kumar, J. Appl. Phys. 112(7), 073718 (2012).
http://dx.doi.org/10.1063/1.4758306
23.
23.X. Granados, J. Fontcuberta, X. Obradors, L. Manosa, and J. B. Torrance, Phys. Rev. B 48(16), 11666 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.11666
24.
24.J. Liu, M. Kargarian, M. Kareev, B. Gray, P. J. Ryan, A. Cruz, N. Tahir, Y. D. Chuang, J. H. Guo, J. M. Rondinelli, J. W. Freeland, G. A. Fiete, and J. Chakhalian, Nat. Commun. 4, 2714 (2013).
http://dx.doi.org/10.1038/ncomms3714
25.
25.R. Jaramillo, S. D. Ha, D. M. Silevitch, and S. Ramanathan, Nat. Phys. 10(4), 304 (2014).
http://dx.doi.org/10.1038/nphys2907
26.
26.M. Tinkham, Introduction to Superconductivity (McGraw-Hill, Inc., New York, 1996).
27.
27.T. Katsufuji, Y. Okimoto, and Y. Tokura, Phys. Rev. Lett. 75(19), 3497 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3497
28.
28.D. Ouellette, Dynamical Conductivity of Strongly Correlated Electron Systems at Oxide Interfaces (University of California, Santa Barbara, 2013).
29.
29.T. Katsufuji, Y. Okimoto, T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B 51(8), 4830 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4830
30.
30.T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter Mater. Phys. 61(17), 11263 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.11263
31.
31.N. Hamada, J. Phys. Chem. Solids 54(10), 1157 (1993).
http://dx.doi.org/10.1016/0022-3697(93)90159-O
32.
32.I. Vobornik, L. Perfetti, M. Zacchigna, M. Grioni, G. Margaritondo, J. Mesot, M. Medarde, and P. Lacorre, Phys. Rev. B 60(12), R8426 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R8426
33.
33.E. F. Schwier, R. Scherwitzl, Z. Vydrova, M. Garcia-Fernandez, M. Gibert, P. Zubko, M. G. Garnier, J. M. Triscone, and P. Aebi, Phys. Rev. B 86(19), 195147 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.195147
34.
34.A. J. Millis, inStrong Interactions in Low Dimensions, edited by L. Degiorgi and D. Baeriswyl (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004).
35.
35.D. G. Ouellette, S. Lee, J. Son, S. Stemmer, L. Balents, A. J. Millis, and S. J. Allen, Phys. Rev. B 82(16), 165112 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165112
36.
36.M. K. Stewart, J. Liu, R. K. Smith, B. C. Chapler, C. H. Yee, D. Meyers, R. E. Baumbach, M. B. Maple, K. Haule, J. Chakhalian, and D. N. Basov, J. Appl. Phys. 110(3), 033514 (2011).
http://dx.doi.org/10.1063/1.3614019
37.
37.A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68(1), 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
38.
38.B. L. Altshuler and A. G. Aronov, Solid State Commun. 30(3), 115 (1979).
http://dx.doi.org/10.1016/0038-1098(79)90967-0
39.
39.A. K. Raychaudhuri, K. P. Rajeev, H. Srikanth, and N. Gayathri, Phys. Rev. B 51(12), 7421 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.7421
40.
40.A. K. Raychaudhuri, K. P. Rajeev, H. Srikanth, and R. Mahendiran, Physica B 197(1-4), 124 (1994).
http://dx.doi.org/10.1016/0921-4526(94)90206-2
41.
41.A. Tiwari, K. P. Rajeev, T. K. Nath, and A. K. Nigam, Solid State Commun. 110(2), 109 (1999).
http://dx.doi.org/10.1016/S0038-1098(99)00047-2
42.
42.H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. Lett. 109(15), 156402 (2012).
http://dx.doi.org/10.1103/physrevlett.109.156402
43.
43.S. Johnston, A. Mukherjee, I. Elfimov, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 112(10), 106404 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.106404
44.
44.B. Lau and A. J. Millis, Phys. Rev. Lett. 110(12), 126404 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.126404
45.
45.S. Lee, R. Chen, and L. Balents, Phys. Rev. Lett. 106(1), 016405 (2011).
http://dx.doi.org/10.1103/physrevlett.106.016405
46.
46.S. Lee, R. Chen, and L. Balents, Phys. Rev. B 84(16), 165119 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165119
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4907771
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4907771
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4907771
2015-04-23
2016-12-03

Abstract

We report on tunneling measurements that reveal the evolution of the quasiparticle state density in two rare earth perovskite nickelates, NdNiO and LaNiO, that are close to a bandwidth controlled metal to insulator transition. We measure the opening of a sharp gap of ∼30 meV in NdNiO in its insulating ground state. LaNiO, which remains a correlated metal at all practical temperatures, exhibits a pseudogap of the same order. The results point to both types of gaps arising from a common origin, namely, a quantum critical point associated with the T = 0 K metal-insulator transition. The results support theoretical models of the quantum phase transition in terms of spin and charge instabilities of an itinerant Fermi surface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4907771.html;jsessionid=3S9YDloLpc1qSTT3quhQEj9P.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4907771&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4907771&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4907771'
Top,Right1,Right2,Right3,