Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. G. Gordon, MRS Bull. 25(08), 52 (2000).
2.K. Ellmer, Nat. Photonics 6(12), 809 (2012).
3.M. Girtan, Sol. Energy Mater. Sol. Cells 100, 153 (2012).
4.J.-A. Jeong, H.-K. Kim, and J. Kim, Sol. Energy Mater. Sol. Cells 125, 113 (2014).
5.S. B. Sepulveda-Mora and S. G. Cloutier, J. Nanomater. 2012, 9.
6.C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, and Y. Yang, Nano Res. 5(11), 805 (2012).
7.L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4(5), 2955 (2010).
8.M.-H. Chang, H.-A. Cho, Y.-S. Kim, E.-J. Lee, and J.-Y. Kim, Nanoscale Res. Lett. 9(1), 1 (2014).
9.N. Al-Dahoudi and M. A. Aegerter, Thin Solid Films 502(1–2), 193 (2006).
10.H. Hagendorfer, K. Lienau, S. Nishiwaki, C. M. Fella, L. Kranz, A. R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y. E. Romanyuk, and A. N. Tiwari, Adv. Mater. 26(4), 632 (2014).
11.D. Altamiranojuarez, Sol. Energy Mater. Sol. Cells 82(1-2), 35 (2004). 003
12.L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif, Adv. Funct. Mater. 23(41), 5177 (2013).
13.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50(3), 293 (2005).
14.W.-J. Jeong and G.-C. Park, Sol. Energy Mater. Sol. Cells 65(1–4), 37 (2001).
15.O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, Appl. Phys. Lett. 90(25), 252108 (2007).
16.N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, Chem. Mater. 22(16), 4769 (2010).
17.R. Delmdahl and R. Pätzel, J. Phys. D: Appl. Phys. 47, 034004 (2014).
18.M. Y. Zhang and G. J. Cheng, Appl. Phys. Lett. 99(5), 051904 (2011).
19.M. Y. Zhang, Q. Nian, and G. J. Cheng, Appl. Phys. Lett. 100(15), 151902 (2012).
20.K. Ellmer, inTransparent Conductive Zinc Oxide, edited by K. Ellmer, A. Klein, and B. Rech (Springer, Berlin, Heidelberg, 2008), Vol. 104, p. 35.
21.A. E. Delahoy and S. Guo, inHandbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd., 2011), p. 716.
22.Q. Nian, M. Y. Zhang, B. D. Schwartz, and G. J. Cheng, Appl. Phys. Lett. 104, 201907 (2014).
23.M. Y. Zhang, Q. Nian, Y. Shin, and G. J. Cheng, J. Appl. Phys. 113(19), 193506 (2013).
24.J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao, and Q. L. Liang, J. Appl. Phys. 100(7), 073714 (2006).
25.T. Minami, MRS Bull. 25(08), 38 (2000). 149
26.J. Y. W. Seto, J. Appl. Phys. 46(12), 5247 (1975).
27.G. Baccarani, B. Riccò, and G. Spadini, J. Appl. Phys. 49(11), 5565 (1978).
28.R. L. Petritz, Phys. Rev. 104(6), 1508 (1956).
29.Z. Zhang, C. Bao, S. Ma, and S. Hou, Appl. Surf. Sci. 257(17), 7893 (2011).
30.R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, Adv. Funct. Mater. 23(41), 5150 (2013).
31.J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8(2), 689 (2008).
32.G. Gruner, J. Mater. Chem. 16(35), 3533 (2006).
33.J. Li, L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, Nano Lett. 6(11), 2472 (2006).
34.H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, J. Am. Chem. Soc. 129(25), 7758 (2007).
35.M. G. Kang and L. J. Guo, Adv. Mater. 19(10), 1391 (2007).
36.L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano 4(5), 2865 (2010).
37.K. Hirohata, Y. Nishi, N. Oka, Y. Sato, I. Yamamoto, and Y. Shigesato, “High Rate Deposition of Al-doped ZnO by Reactive Sputtering: (1) Unipolar Pulsing with Plasma Emission Control,” Materials Research Society Symposium Proceedings , Boston, Massachusetts, USA, 1-5 December 2008, Vol. 1109, p. 37.
38.J. J. Berry, D. S. Ginley, and P. E. Burrows, Appl. Phys. Lett. 92(19), 193304 (2008).
39.G. Ma, D. Li, H. Ma, J. Shen, C. Wu, J. Ge, S. Hu, and N. Dai, Appl. Phys. Lett. 93(21), 211101 (2008).
40.S. Jäger, B. Szyszka, J. Szczyrbowski, and G. Bräuer, Surf. Coat. Technol. 98(1–3), 1304 (1998).
41.T. Ohgaki, Y. Kawamura, T. Kuroda, N. Ohashi, Y. Adachi, T. Tsurumi, F. Minami, and H. Haneda, Key Eng. Mater. 248, 91 (2003).
42.S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, and W. Möller, Appl. Phys. Lett. 94(4), 042103 (2009).
43.H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, J. Vac. Sci. Technol., A 22(4), 1757 (2004).
44.H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films 445(2), 263 (2003).
45.R. J. Mendelsberg, S. H. N. Lim, Y. K. Zhu, J. Wallig, D. J. Milliron, and A. Anders, J. Phys. D: Appl. Phys. 44(23), 232003 (2011).
46.H. Cheun, C. Fuentes-Hernandez, J. Shim, Y. Fang, Y. Cai, H. Li, A. K. Sigdel, J. Meyer, J. Maibach, A. Dindar, Y. Zhou, J. J. Berry, J.-L. Bredas, A. Kahn, K. H. Sandhage, and B. Kippelen, Adv. Funct. Mater. 22(7), 1531 (2012).

Data & Media loading...


Article metrics loading...



Commercial production of transparent conducting oxide (TCO) polycrystalline films requires high electrical conductivity with minimal degradation in optical transparency. Aqueous solution deposited TCO films would reduce production costs of TCO films but suffer from low electrical mobility, which severely degrades both electrical conductivity and optical transparency in the visible spectrum. Here, we demonstrated that grain boundary modification by ultra-violet laser crystallization (UVLC) of solution deposited aluminium-doped zinc oxide (AZO) nanocrystals results in high Hall mobility, with a corresponding dramatic improvement in AZO electrical conductance. The AZO films after laser irradiation exhibit electrical mobility up to 18.1 cm2 V−1 s−1 with corresponding electrical resistivity and sheet resistances as low as 1 × 10−3 Ω cm and 75 Ω/sq, respectively. The high mobility also enabled a high transmittance (T) of 88%-96% at 550 nm for the UVLC films. In addition, HAZE measurement shows AZO film scattering transmittance as low as 1.8%, which is superior over most other solution deposited transparent electrode alternatives such as silver nanowires. Thus, AZO films produced by the UVLC technique have a combined figure of merit for electrical conductivity, optical transparency, and optical HAZE higher than other solution based deposition techniques and comparable to vacuumed based deposition methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd