Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
2.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201 (2005).
3.K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315(5817), 1379 (2007).
4.A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183 (2007).
5.A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).
6.J. Mannhart and D. G. Schlom, Science 327(5973), 1607 (2010).
7.A. Ohtomo and H. Y. Hwang, Nature 427(6973), 423 (2004).
8.S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313(5795), 1942 (2006).
9.N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317(5842), 1196 (2007).
10.A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature 456(7222), 624 (2008).
11.A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6(7), 493 (2007).
12.L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys. 7(10), 762 (2011).
13.D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107(5), 056802 (2011).
14.J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7(10), 767 (2011).
15.F. Bi, M. Huang, S. Ryu, H. Lee, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nat. Commun. 5, 5019 (2014).
16.M. B. Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104(12), 126802 (2010).
17.A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J. M. Triscone, Phys. Rev. Lett. 104(12), 126803 (2010).
18.Y. W. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nat. Commun. 2, 494 (2011).
19.R. Arras, V. G. Ruiz, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 85(12), 125404 (2012).
20.N. Y. Chan, M. Zhao, N. Wang, K. Au, J. Wang, L. W. H. Chan, and J. Y. Dai, ACS Nano 7(10), 8673 (2013).
21.V. T. Tra, J. W. Chen, P. C. Huang, B. C. Huang, Y. Cao, C. H. Yeh, H. J. Liu, E. A. Eliseev, A. N. Morozovska, J. Y. Lin, Y. C. Chen, M. W. Chu, P. W. Chiu, Y. P. Chiu, L. Q. Chen, C. L. Wu, and Y. H. Chu, Adv. Mater. 25(24), 3357 (2013).
22.M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, Adv. Funct. Mater. 23(42), 5240 (2013).
23.C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7(4), 298 (2008).
24.C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323(5917), 1026 (2009).
25.A. Levy, F. Bi, M. Huang, S. Lu, M. Tomczyk, G. Cheng, P. Irvin, and J. Levy, J. Visualized Exp. 2014(89), 51886 (2014).
26.P. Irvin, M. Huang, F. J. Wong, T. D. Sanders, Y. Suzuki, and J. Levy, Appl. Phys. Lett. 102(10), 103113 (2013).
27.P. Irvin, Y. J. Ma, D. F. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C. B. Eom, and J. Levy, Nat. Photonics 4(12), 849 (2010).
28.Y. Ma, M. Huang, S. Ryu, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nano Lett. 13(6), 2884 (2013).
29.D. F. Bogorin, C. W. Bark, H. W. Jang, C. Cen, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(1), 013102 (2010).
30.G. L. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J. W. Park, C. B. Eom, G. Medeiros-Ribeiro, and J. Levy, Nat. Nanotechnol. 6(6), 343 (2011).
31.X. Hong, K. Zou, A. M. DaSilva, C. H. Ahn, and J. Zhu, Solid State Commun. 152(15), 1365 (2012).
32.Y. Zheng, G. X. Ni, S. Bae, C. X. Cong, O. Kahya, C. T. Toh, H. R. Kim, D. Im, T. Yu, J. H. Ahn, B. H. Hong, and B. Ozyilmaz, Europhys. Lett. 93(1), 17002 (2011).
33.D. F. Jin, A. Kumar, K. H. Fung, J. Xu, and N. X. Fang, Appl. Phys. Lett. 102(20), 201118 (2013).
34.W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, Nano Lett. 12(5), 2272 (2012).
35.C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108(12), 4720 (2011).
36.M. Huang, F. Bi, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Appl. Phys. Lett. 104(16), 161606 (2014).
37.A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6(12), 2667 (2006).
38.M. Huang, F. Bi, S. Ryu, C. B. Eom, P. Irvin, and J. Levy, APL Mater. 1(5), 052110 (2013).
39.R. F. Schaufel and M. J. Weber, J. Chem. Phys. 46(7), 2859 (1967).
40.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312 (2009).
41.J. F. Hsu, S. Dhingra, G. Jnawali, M. Huang, F. Bi, L. Chen, P. Irvin, C. B. Eom, J. Levy, and B. D’Urso, ”Patterning, Transferring and Suspension of Single-layer Graphene by Deep-ultraviolet Lithography with a Single Thin Layer of Poly(methyl methacrylate)” (unpublished).

Data & Media loading...


Article metrics loading...



We report the development and characterization of graphene/LaAlO/SrTiO heterostructures. Complex-oxide heterostructures are created by pulsed laser deposition and are integrated with graphene using both mechanical exfoliation and transfer from chemical-vapor deposition on ultraflat copper substrates. Nanoscale control of the metal-insulator transition at the LaAlO/SrTiO interface, achieved using conductive atomic force microscope lithography, is demonstrated to be possible through the graphene layer. LaAlO/SrTiO-based electric field effects using a graphene top gate are also demonstrated. The ability to create functional field-effect devices provides the potential of graphene-complex-oxide heterostructures for scientific and technological advancement.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd