Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4916098
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201 (2005).
http://dx.doi.org/10.1038/nature04235
3.
3.K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science 315(5817), 1379 (2007).
http://dx.doi.org/10.1126/science.1137201
4.
4.A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183 (2007).
http://dx.doi.org/10.1038/nmat1849
5.
5.A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81(1), 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
6.
6.J. Mannhart and D. G. Schlom, Science 327(5973), 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
7.
7.A. Ohtomo and H. Y. Hwang, Nature 427(6973), 423 (2004).
http://dx.doi.org/10.1038/nature02308
8.
8.S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313(5795), 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
9.
9.N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317(5842), 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
10.
10.A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature 456(7222), 624 (2008).
http://dx.doi.org/10.1038/nature07576
11.
11.A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6(7), 493 (2007).
http://dx.doi.org/10.1038/nmat1931
12.
12.L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys. 7(10), 762 (2011).
http://dx.doi.org/10.1038/nphys2080
13.
13.D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107(5), 056802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056802
14.
14.J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7(10), 767 (2011).
http://dx.doi.org/10.1038/nphys2079
15.
15.F. Bi, M. Huang, S. Ryu, H. Lee, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nat. Commun. 5, 5019 (2014).
http://dx.doi.org/10.1038/ncomms6019
16.
16.M. B. Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104(12), 126802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126802
17.
17.A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J. M. Triscone, Phys. Rev. Lett. 104(12), 126803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126803
18.
18.Y. W. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nat. Commun. 2, 494 (2011).
http://dx.doi.org/10.1038/ncomms1501
19.
19.R. Arras, V. G. Ruiz, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 85(12), 125404 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125404
20.
20.N. Y. Chan, M. Zhao, N. Wang, K. Au, J. Wang, L. W. H. Chan, and J. Y. Dai, ACS Nano 7(10), 8673 (2013).
http://dx.doi.org/10.1021/nn4029184
21.
21.V. T. Tra, J. W. Chen, P. C. Huang, B. C. Huang, Y. Cao, C. H. Yeh, H. J. Liu, E. A. Eliseev, A. N. Morozovska, J. Y. Lin, Y. C. Chen, M. W. Chu, P. W. Chiu, Y. P. Chiu, L. Q. Chen, C. L. Wu, and Y. H. Chu, Adv. Mater. 25(24), 3357 (2013).
http://dx.doi.org/10.1002/adma.201300757
22.
22.M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, Adv. Funct. Mater. 23(42), 5240 (2013).
http://dx.doi.org/10.1002/adfm.201203355
23.
23.C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7(4), 298 (2008).
http://dx.doi.org/10.1038/nmat2136
24.
24.C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323(5917), 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
25.
25.A. Levy, F. Bi, M. Huang, S. Lu, M. Tomczyk, G. Cheng, P. Irvin, and J. Levy, J. Visualized Exp. 2014(89), 51886 (2014).
http://dx.doi.org/10.3791/51886
26.
26.P. Irvin, M. Huang, F. J. Wong, T. D. Sanders, Y. Suzuki, and J. Levy, Appl. Phys. Lett. 102(10), 103113 (2013).
http://dx.doi.org/10.1063/1.4795725
27.
27.P. Irvin, Y. J. Ma, D. F. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C. B. Eom, and J. Levy, Nat. Photonics 4(12), 849 (2010).
http://dx.doi.org/10.1038/nphoton.2010.238
28.
28.Y. Ma, M. Huang, S. Ryu, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nano Lett. 13(6), 2884 (2013).
http://dx.doi.org/10.1021/nl401219v
29.
29.D. F. Bogorin, C. W. Bark, H. W. Jang, C. Cen, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(1), 013102 (2010).
http://dx.doi.org/10.1063/1.3459138
30.
30.G. L. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J. W. Park, C. B. Eom, G. Medeiros-Ribeiro, and J. Levy, Nat. Nanotechnol. 6(6), 343 (2011).
http://dx.doi.org/10.1038/nnano.2011.56
31.
31.X. Hong, K. Zou, A. M. DaSilva, C. H. Ahn, and J. Zhu, Solid State Commun. 152(15), 1365 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.050
32.
32.Y. Zheng, G. X. Ni, S. Bae, C. X. Cong, O. Kahya, C. T. Toh, H. R. Kim, D. Im, T. Yu, J. H. Ahn, B. H. Hong, and B. Ozyilmaz, Europhys. Lett. 93(1), 17002 (2011).
http://dx.doi.org/10.1209/0295-5075/93/17002
33.
33.D. F. Jin, A. Kumar, K. H. Fung, J. Xu, and N. X. Fang, Appl. Phys. Lett. 102(20), 201118 (2013).
http://dx.doi.org/10.1063/1.4807762
34.
34.W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, Nano Lett. 12(5), 2272 (2012).
http://dx.doi.org/10.1021/nl300046g
35.
35.C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108(12), 4720 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
36.
36.M. Huang, F. Bi, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Appl. Phys. Lett. 104(16), 161606 (2014).
http://dx.doi.org/10.1063/1.4873125
37.
37.A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6(12), 2667 (2006).
http://dx.doi.org/10.1021/nl061420a
38.
38.M. Huang, F. Bi, S. Ryu, C. B. Eom, P. Irvin, and J. Levy, APL Mater. 1(5), 052110 (2013).
http://dx.doi.org/10.1063/1.4831855
39.
39.R. F. Schaufel and M. J. Weber, J. Chem. Phys. 46(7), 2859 (1967).
http://dx.doi.org/10.1063/1.1841140
40.
40.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
41.
41.J. F. Hsu, S. Dhingra, G. Jnawali, M. Huang, F. Bi, L. Chen, P. Irvin, C. B. Eom, J. Levy, and B. D’Urso, ”Patterning, Transferring and Suspension of Single-layer Graphene by Deep-ultraviolet Lithography with a Single Thin Layer of Poly(methyl methacrylate)” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4916098
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4916098
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4916098
2015-03-20
2016-09-30

Abstract

We report the development and characterization of graphene/LaAlO/SrTiO heterostructures. Complex-oxide heterostructures are created by pulsed laser deposition and are integrated with graphene using both mechanical exfoliation and transfer from chemical-vapor deposition on ultraflat copper substrates. Nanoscale control of the metal-insulator transition at the LaAlO/SrTiO interface, achieved using conductive atomic force microscope lithography, is demonstrated to be possible through the graphene layer. LaAlO/SrTiO-based electric field effects using a graphene top gate are also demonstrated. The ability to create functional field-effect devices provides the potential of graphene-complex-oxide heterostructures for scientific and technological advancement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4916098.html;jsessionid=hmwFXzVHirw34uWgF4tlJjAG.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4916098&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4916098&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4916098'
Top,Right1,Right2,Right3,