Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. 123, 199C (1976).
2.R. G. Gordon, MRS Bull. 25, 52 (2000). 151
3.B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).
4.T. Jäger, B. Bissig, M. Dobeli, A. N. Tiwari, and Y. E. Romanyuk, Thin Solid Films 553, 21 (2014).
5.J. Kane, H. P. Schweizer, and W. Kern, J. Electrochem. Soc. 123, 270 (1976).
6.S. Jäger, B. Szyszka, J. Szczyrbowski, and G. Brauer, Surf. Coat. Technol. 98, 1304 (1998).
7.S. Shanthi, C. Subramanian, and P. Ramasamy, J. Cryst. Growth 197, 858 (1999).
8.J. L. Huang, Y. Pan, J. Y. Chang, and B. S. Yau, Surf. Coat. Technol. 184, 188 (2004).
9.S. U. Lee, B. Hong, and W. S. Choi, J. Vac. Sci. Technol., A 27, 996 (2009).
10.M. Weidner, J. Brötz, and A. Klein, Thin Solid Films 555, 173 (2014).
11.M. E. White, O. Bierwagen, M. Y. Tsai, and J. S. Speck, J. Appl. Phys. 106, 093704 (2009).
12.M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).
13.A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).
14.D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (John Wiley, Hoboken, NJ, 2006), p. 779.
15.K. L. Chopra, Thin Solid Films 90, 440 (1982).
16.D. H. Zhang and H. L. Ma, Appl. Phys. A: Mater. Sci. Process. 62, 487 (1996).
17.R. L. Petritz, Phys. Rev. 104, 1508 (1956).
18.G. D. Mahan, L. M. Levinson, and H. R. Philipp, J. Appl. Phys. 50, 2799 (1979).
19.A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd ed. (Wiley, Chichester, West Sussex, UK, 2011), p. 1132.
20.J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).
21.D. Mergel and Z. Qiao, J. Phys. D: Appl. Phys. 35, 794 (2002).
22.K. J. Button, C. G. Fonstad, and W. Dreybrod, Phys. Rev. B 4, 4539 (1971).
23.S. K. V. Farahani, T. D. Veal, A. M. Sanchez, O. Bierwagen, M. E. White, S. Gorfman, P. A. Thomas, J. S. Speck, and C. F. McConville, Phys. Rev. B 86, 245315 (2012).
24.M. Guglielmi, E. Menegazzo, M. Paolizzi, G. Gasparro, D. Ganz, J. Putz, M. A. Aegerter, L. Hubert-Pfalzgraf, C. Pascual, A. Duran, H. X. Willems, M. Van Bommel, L. Buttgenbach, and L. Costa, J. Sol-Gel Sci. Technol. 13, 679 (1998).
25.H. Ibach and H. Lüth, Solid-State Physics: An Introduction to Principles of Materials Science, 4th. ed. (Springer, Dordrecht, 2009), p. 533.
26.M. W. J. Prins, K.-O. Grosse-Holz, J. F. M. Cillessen, and L. F. Feiner, J. Appl. Phys. 83, 888 (1998).
27.M. V. Hohmann, A. Klein, M. Weidner, H. F. Wardenga, A. Fuchs, A. Wachau, P. Agoston, K. Albe, J. Jia, and Y. Shigesato, presented at the 5th International Symposium on Tranparent Conductive Materials, Platanias, Greece, 2014.
28.M. Birkholz, Thin Film Analysis by X-Ray Scattering (WILEY-VCH, Weinheim, 2006), p. 356.
29.K. Ellmer and T. Welzel, J. Mater. Res. 27, 765 (2012).
30.E. C. P. E. Rodrigues and P. Olivi, J. Phys. Chem. Solids 64, 1105 (2003).
31.A. I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, and T. Mitsui, Phys. Rev. B 77, 014302 (2008).
32.T. Jäger, Y. E. Romanyuk, A. N. Tiwari, and A. Anders, J. Appl. Phys. 116, 033301 (2014).

Data & Media loading...


Article metrics loading...



Electron transport in Sb-doped SnO (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm2 V−1 s−1 to 6 cm2 V−1 s−1 when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10−3 Ω cm corresponding to the mobility of 12 cm2 V−1 s−1 which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd