Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4916586
1.
1.Z. M. Jarzebski and J. P. Marton, J. Electrochem. Soc. 123, 199C (1976).
http://dx.doi.org/10.1149/1.2133010
2.
2.R. G. Gordon, MRS Bull. 25, 52 (2000).
http://dx.doi.org/10.1557/mrs2000. 151
3.
3.B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).
http://dx.doi.org/10.1063/1.357383
4.
4.T. Jäger, B. Bissig, M. Dobeli, A. N. Tiwari, and Y. E. Romanyuk, Thin Solid Films 553, 21 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.12.038
5.
5.J. Kane, H. P. Schweizer, and W. Kern, J. Electrochem. Soc. 123, 270 (1976).
http://dx.doi.org/10.1149/1.2132802
6.
6.S. Jäger, B. Szyszka, J. Szczyrbowski, and G. Brauer, Surf. Coat. Technol. 98, 1304 (1998).
http://dx.doi.org/10.1016/s0257-8972(97)00145-x
7.
7.S. Shanthi, C. Subramanian, and P. Ramasamy, J. Cryst. Growth 197, 858 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01066-5
8.
8.J. L. Huang, Y. Pan, J. Y. Chang, and B. S. Yau, Surf. Coat. Technol. 184, 188 (2004).
http://dx.doi.org/10.1016/j.surfcoat.2003.11.004
9.
9.S. U. Lee, B. Hong, and W. S. Choi, J. Vac. Sci. Technol., A 27, 996 (2009).
http://dx.doi.org/10.1116/1.3139891
10.
10.M. Weidner, J. Brötz, and A. Klein, Thin Solid Films 555, 173 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.05.147
11.
11.M. E. White, O. Bierwagen, M. Y. Tsai, and J. S. Speck, J. Appl. Phys. 106, 093704 (2009).
http://dx.doi.org/10.1063/1.3254241
12.
12.M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).
http://dx.doi.org/10.1016/j.progsurf.2005.09.002
13.
13.A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).
http://dx.doi.org/10.1103/physrevlett.101.055502
14.
14.D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (John Wiley, Hoboken, NJ, 2006), p. 779.
15.
15.K. L. Chopra, Thin Solid Films 90, 440 (1982).
http://dx.doi.org/10.1016/0040-6090(82)90555-7
16.
16.D. H. Zhang and H. L. Ma, Appl. Phys. A: Mater. Sci. Process. 62, 487 (1996).
http://dx.doi.org/10.1007/BF01567122
17.
17.R. L. Petritz, Phys. Rev. 104, 1508 (1956).
http://dx.doi.org/10.1103/physrev.104.1508
18.
18.G. D. Mahan, L. M. Levinson, and H. R. Philipp, J. Appl. Phys. 50, 2799 (1979).
http://dx.doi.org/10.1063/1.326191
19.
19.A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd ed. (Wiley, Chichester, West Sussex, UK, 2011), p. 1132.
20.
20.J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).
http://dx.doi.org/10.1063/1.2719158
21.
21.D. Mergel and Z. Qiao, J. Phys. D: Appl. Phys. 35, 794 (2002).
http://dx.doi.org/10.1088/0022-3727/35/8/311
22.
22.K. J. Button, C. G. Fonstad, and W. Dreybrod, Phys. Rev. B 4, 4539 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.4539
23.
23.S. K. V. Farahani, T. D. Veal, A. M. Sanchez, O. Bierwagen, M. E. White, S. Gorfman, P. A. Thomas, J. S. Speck, and C. F. McConville, Phys. Rev. B 86, 245315 (2012).
http://dx.doi.org/10.1103/physrevb.86.245315
24.
24.M. Guglielmi, E. Menegazzo, M. Paolizzi, G. Gasparro, D. Ganz, J. Putz, M. A. Aegerter, L. Hubert-Pfalzgraf, C. Pascual, A. Duran, H. X. Willems, M. Van Bommel, L. Buttgenbach, and L. Costa, J. Sol-Gel Sci. Technol. 13, 679 (1998).
http://dx.doi.org/10.1023/A:1008636804449
25.
25.H. Ibach and H. Lüth, Solid-State Physics: An Introduction to Principles of Materials Science, 4th. ed. (Springer, Dordrecht, 2009), p. 533.
26.
26.M. W. J. Prins, K.-O. Grosse-Holz, J. F. M. Cillessen, and L. F. Feiner, J. Appl. Phys. 83, 888 (1998).
http://dx.doi.org/10.1063/1366773
27.
27.M. V. Hohmann, A. Klein, M. Weidner, H. F. Wardenga, A. Fuchs, A. Wachau, P. Agoston, K. Albe, J. Jia, and Y. Shigesato, presented at the 5th International Symposium on Tranparent Conductive Materials, Platanias, Greece, 2014.
28.
28.M. Birkholz, Thin Film Analysis by X-Ray Scattering (WILEY-VCH, Weinheim, 2006), p. 356.
29.
29.K. Ellmer and T. Welzel, J. Mater. Res. 27, 765 (2012).
http://dx.doi.org/10.1557/jmr.2011.428
30.
30.E. C. P. E. Rodrigues and P. Olivi, J. Phys. Chem. Solids 64, 1105 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00003-9
31.
31.A. I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, and T. Mitsui, Phys. Rev. B 77, 014302 (2008).
http://dx.doi.org/10.1103/physrevb.77.014302
32.
32.T. Jäger, Y. E. Romanyuk, A. N. Tiwari, and A. Anders, J. Appl. Phys. 116, 033301 (2014).
http://dx.doi.org/10.1063/1.4887119
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4916586
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4916586
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4916586
2015-03-30
2016-09-28

Abstract

Electron transport in Sb-doped SnO (ATO) films is studied to unveil the limited carrier mobility observed in sputtered films as compared to other deposition methods. Transparent and conductive ATO layers are deposited from metallic tin targets alloyed with antimony in oxygen atmosphere optimized for reactive sputtering. The carrier mobility decreases from 24 cm2 V−1 s−1 to 6 cm2 V−1 s−1 when increasing the doping level from 0 to 7 at. %, and the lowest resistivity of 1.8 × 10−3 Ω cm corresponding to the mobility of 12 cm2 V−1 s−1 which is obtained for the 3 at. % Sb-doped ATO. Temperature-dependent Hall effect measurements and near-infrared reflectance measurements reveal that the carrier mobility in sputtered ATO is limited by ingrain scattering. In contrast, the mobility of unintentionally doped SnO films is determined mostly by the grain boundary scattering. Both limitations should arise from the sputtering process itself, which suffers from the high-energy-ion bombardment and yields polycrystalline films with small grain size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4916586.html;jsessionid=GCsTJCpTD_rr99G_EhdOtYgE.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4916586&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4916586&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4916586'
Top,Right1,Right2,Right3,