Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
2.X. Ariando, G. Wang, Z. Q. Baskaran, J. Liu, J. B. Huijben, A. Yi, A. R. Annadi, A. Barman, S. Rusydi, Y. P. Dhar, J. Feng, H. Ding, T. Hilgenkamp, and Venkatesan, Nat. Commun. 2, 188 (2011).
3.Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, Nat. Commun. 2, 494 (2011).
4.L. Bellaiche and D. Vanderbilt, Phys. Rev. Lett. 83, 1347 (1999).
5.T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 113 (2007).
6.X. Zhao, B. Fang, H. Cao, Y. Guo, and H. Luo, Mater. Sci. Eng.: B 96, 254 (2002).
7.Z.-W. Yin, H.-S. Luo, P.-C. Wang, and G.-S. Xu, Ferroelectrics 229, 207 (1999).
8.B. Meunier, L. Louahadj, D. Le Bourdais, L. Largeau, G. Agnus, P. Lecoeur, V. Pillard, L. Mazet, R. Bachelet, P. Regreny, C. Botella, G. Grenet, D. Albertini, C. Dubourdieu, B. Gautier, and G. Saint-Girons, MRS Proceedings 1675, 9398 (2014).
9.N. Hill and A. Filippetti, J. Magn. Magn. Mater. 242-245, 976–979 (2002).
10.J. F. Scott, J. Mater. Chem. 22, 4567 (2012).
11.L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng.: R: Rep. 68, 89 (2010).
12.Z. Shao and S. M. Haile, Nature 431, 170 (2004).
13.P. Bao, T. J. Jackson, X. Wang, and M. J. Lancaster, J. Phys. D: Appl. Phys. 41, 063001 (2008).
14.Y. Okimoto, T. Katsufuji, T. Ishikawa, A. Urushibara, T. Arima, and Y. Tokura, Phys. Rev. Lett. 75, 109 (1995).
15.J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172 (1996).
16.J. Puustinen, J. Lappalainen, J. Hiltunen, and V. Lantto, Ferroelectrics 370, 46 (2008).
17.C. Grygiel, S. R. C. McMitchell, Z. Xu, L. Yan, H. J. Niu, D. Giap, J. Bacsa, P. R. Chalker, and M. J. Rosseinsky, Chem. Mater. 22, 1955 (2010).
18.D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007).
19.H. Yang, H. Wang, J. Yoon, Y. Wang, M. Jain, D. M. Feldmann, P. C. Dowden, J. L. MacManus-Driscoll, and Q. Jia, Adv. Mater. 21, 3794 (2009).
20.J. L. MacManus-Driscoll, Adv. Funct. Mater. 20, 2035 (2010).
21.A. J. Hatt and N. A. Spaldin, Appl. Phys. Lett. 90, 242916 (2007).
22.J. X. Zhang, J. Y. Dai, W. Lu, and H. L. W. Chan, J. Mater. Sci. 44, 5143 (2009).
23.M. Y. Chern, A. Gupta, and B. W. Hussey, Appl. Phys. Lett. 60(24), 3045 (1992).
24.A. Gupta, M. Y. Chern, and B. W. Hussey, Physica C 209, 175 (1993).
25.G. J. H. M. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 70(14), 1888 (1997).
26.G. J. H. M. Rijnders, The Initial Growth of Complex Oxides: Study and Manipulation (University of Twente, 2001).
27.G. Koster, A. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 74, 3729 (1999).
28.S. R. C. McMitchell, Y. Y. Tse, H. Bouyanfif, T. J. Jackson, I. P. Jones, and M. J. Lancaster, Appl. Phys. Lett. 95, 174102 (2009).
29.S. R. C. McMitchell, An Investigation into Controlling the Growth Modes of Ferroelectric Thin Films Using Pulsed Laser Deposition and RHEED (University of Birmingham, 2008).
30.A. H. G. Vlooswijk, B. Noheda, G. Catalan, A. Janssens, B. Barcones, G. Rijnders, D. H. A. Blank, S. Venkatesan, B. Kooi, and J. T. M. de Hosson, Appl. Phys. Lett. 91, 112901 (2007).
31.D. H. A. Blank, M. Dekkers, and G. Rijnders, J. Phys. D: Appl. Phys. 47, 034006 (2013).
32.P. Willmott and J. Huber, Rev. Mod. Phys. 72, 315 (2000).
33.M. Ohring, Material Science of Thin Films, 2nd ed. (Academic Press, 2002).
34.J. F. Ready, Appl. Phys. Lett. 3(1), 11 (1963).
35.R. Timm, P. R. Willmott, and J. R. Huber, J. Appl. Phys. 80(3), 1794 (1996).
36.M. Lippmaa, N. Nakagawa, and M. Kawasaki, Appl. Phys. Lett. 74(23), 3543 (1999).
37.A. Ichimiya and P. I. Cohen, Reflection High Energy Electron Diffraction (Cambridge University Press, 2004).
38.C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & Sons Inc., 1996).
39.J. Van Hove, C. Lent, P. Pukite, and P. Cohen, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 1, 741 (1983).
40.J. Neave, B. Joyce, P. Dobson, and N. Norton, Appl. Phys. A: Solids Surf. 31, 1 (1983).
41.T. Terashima, Y. Bando, K. Iijima, K. Yamamoto, K. Hirata, K. Hayashi, K. Kamigaki, and H. Terauchi, Phys. Rev. Lett. 65, 2684 (1990).
42.Y. Y. Tse, S. R. C. McMitchell, T. J. Jackson, Y. H. Liu, and I. P. Jones, Ferroelectrics 368, 49 (2008).
43.B. Dam and B. Stauble-Pumpin, J. Mater. Sci.: Mater. Electron. 9, 1 (1998).
44.R. Wördenweber, Supercond. Sci. Technol. 12, R86R102 (1999).
45.D. H. A. Blank, G. Koster, G. J. H. M. Rijnders, E. van Setten, P. Slycke, and H. Rogalla, Appl. Phys. A 69, S17 (1999).
46.J. W. Matthews, J. Vac. Sci. Technol. 12(1), 126 (1975).
47.M.-R. Li, U. Adem, S. R. C. McMitchell, Z. Xu, C. I. Thomas, J. E. Warren, D. V. Giap, H. Niu, X. Wan, R. G. Palgrave, F. Schiffmann, F. Cora, B. Slater, T. L. Burnett, M. G. Cain, A. M. Abakumov, G. van Tendeloo, M. F. Thomas, M. J. Rosseinsky, and J. B. Claridge, J. Am. Chem. Soc. 134, 3737 (2012).
48.H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
49.A. Chen, Z. Bi, C.-F. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J. L. MacManus-Driscoll, and H. Wang, Adv. Funct. Mater. 21, 2423 (2011).
50.L. Yan, H. Niu, C. A. Bridges, P. A. Marshall, J. Hadermann, G. van Tendeloo, P. R. Chalker, and M. J. Rosseinsky, Angew. Chem. 119, 4623 (2007).
51.R. G. Palgrave, P. Borisov, M. S. Dyer, S. R. C. McMitchell, G. R. Darling, J. B. Claridge, M. Batuk, H. Tan, H. Tian, J. Verbeeck, J. Hadermann, and M. J. Rosseinsky, J. Am. Chem. Soc. 134, 7700 (2012).
52.M. Gibert, Nat. Mater. 11, 195 (2012).
53.R. Sayers, N. L. O. Flack, J. Alaria, P. A. Chater, R. G. Palgrave, S. R. C. McMitchell, S. Romani, Q. M. Ramasse, T. J. Pennycook, and M. J. Rosseinsky, Chem. Sci. 4, 2403 (2013).
54.D. Newns, B. Elmegreen, X. Hu Liu, and G. Martyna, J. Appl. Phys. 111, 084509 (2012).
55.B. Kaleli, M. D. Nguyen, J. Schmitz, R. A. M. Wolters, and R. J. E. Hueting, Microelectron. Eng. 119, 16 (2014).
56.See for information about large scale PLD systems.

Data & Media loading...


Article metrics loading...



Complex oxides are becoming engrained into modern technology. Understanding the growth and properties of these materials is extremely important for development of novel devices and optimization of existing technologies. Control of the growth of thin film oxides is essential to facilitate the fine-tuning of properties needed for device optimization. In this article, some recent advances in nanoscale engineering of functional oxides are summarized. Control of film structure through manipulation of growth kinetics and substrate considerations is discussed. The construction of composites and artificial materials is also considered. Furthermore, a future outlook is investigated including a route to industrial scale application.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd