Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4919057
1.
1.R. Branquinho, D. Salgueiro, A. Santa, A. Kiazadeh, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, Semicond. Sci. Technol. 30, 024007 (2015).
http://dx.doi.org/10.1088/0268-1242/30/2/024007
2.
2.L. Jun seok, K. Young-Jin, and C. Woon-Seop, J. Korean Phys. Soc. 59, 3055 (2011).
http://dx.doi.org/10.3938/jkps.59.3055
3.
3.S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, J. Phys. D: Appl. Phys. 42, 035106 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/035106
4.
4.R. Branquinho, D. Salgueiro, L. Santos, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, ACS Appl. Mater. Interfaces 6, 19592 (2014).
http://dx.doi.org/10.1021/am503872t
5.
5.Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, and J. Moon, ACS Appl. Mater. Interfaces 2, 611 (2010).
http://dx.doi.org/10.1021/am900787k
6.
6.J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, Thin Solid Films 520, 1679 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.07.018
7.
7.J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys. Lett. 93, 093504 (2008).
http://dx.doi.org/10.1063/1.2977865
8.
8.S. A. Hoenig and J. R. Lane, Surf. Sci. 11, 163 (1968).
http://dx.doi.org/10.1016/0039-6028(68)90064-2
9.
9.M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, and I. Ferreira, Appl. Phys. Lett. 95, 063502 (2009).
http://dx.doi.org/10.1063/1.3187532
10.
10.D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, and J. Chung, Appl. Phys. Lett. 90, 192101 (2007).
http://dx.doi.org/10.1063/1.2723543
11.
11.J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 92, 072104 (2008).
http://dx.doi.org/10.1063/1.2838380
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4919057
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4919057
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4919057
2015-04-23
2016-10-01

Abstract

In this study, we report solution-processed amorphous zinc tin oxide transistors exhibiting high operational stability under positive gate bias stress, translated by a recoverable threshold voltage shift of about 20% of total applied stress voltage. Under vacuum condition, the threshold voltage shift saturates showing that the gate-bias stress is limited by trap exhaustion or balance between trap filling and emptying mechanism. In ambient atmosphere, the threshold voltage shift no longer saturates, stability is degraded and the recovering process is impeded. We suggest that the trapping time during the stress and detrapping time in recovering are affected by oxygen adsorption/desorption processes. The time constants extracted from stretched exponential fitting curves are ≈106 s and 105 s in vacuum and air, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4919057.html;jsessionid=5bi0rd-JZLqd1lVyh94A7egT.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4919057&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4919057&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4919057'
Top,Right1,Right2,Right3,