Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4919763
1.
1.A. Y. Cho and J. R. Arthur, Prog. Solid State Chem. 10(3), 157-191 (1975).
http://dx.doi.org/10.1016/0079-6786(75)90005-9
2.
2.Molecular Beam Epitaxy: Applications to Key Materials, edited by R. F. C. Farrow (Noyes, Park Ridge, 1995).
3.
3.M. A. Herman and H. Sitter, in Molecular Beam Epitaxy: Fundamentals and Current Status, 2nd ed. (Springer-Verlag, Berlin, 1996).
4.
4.S. Yoshida, in Critical Reviews™ in Solid State and Materials Sciences, edited by D. E. Schuele and R. W. Hoffman (CRC Press, Boca Raton, 1984), Vol. 11, pp. 287-316.
5.
5.R. A. Betts and C. W. Pitt, Electron. Lett. 21(21), 960-962 (1985).
http://dx.doi.org/10.1049/el:19850678
6.
6.M. Petrucci, C. W. Pitt, and P. J. Dobson, Electron. Lett. 22(18), 954-956 (1986).
http://dx.doi.org/10.1049/el:19860651
7.
7.W. E. Henderson, W. L. Calley, A. G. Carver, H. Chen, and W. A. Doolittle, J. Cryst. Growth 324(1), 134-141 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.03.049
8.
8.J. G. Bednorz and K. A. Müller, Z. Phys. B 64(2), 189-193 (1986).
http://dx.doi.org/10.1007/BF01303701
9.
9.J. G. Bednorz, M. Takashige, and K. A. Müller, Europhys. Lett. 3(3), 379-385 (1987).
http://dx.doi.org/10.1209/0295-5075/3/3/021
10.
10.D. G. Schlom, J. N. Eckstein, E. S. Hellman, C. Webb, F. Turner, J. S. Harris, Jr., M. R. Beasley, and T. H. Geballe, in Extended Abstracts, High-Temperature Superconductors II, edited by D. W. Capone II, W. H. Butler, B. Batlogg, and C. W. Chu (Materials Research Society, Pittsburgh, 1988), pp. 197-200.
11.
11.R. J. Spah, H. F. Hess, H. L. Stormer, A. E. White, and K. T. Short, Appl. Phys. Lett. 53(5), 441-443 (1988).
http://dx.doi.org/10.1063/1.100614
12.
12.D. G. Schlom, J. N. Eckstein, E. S. Hellman, S. K. Streiffer, J. S. Harris, Jr., M. R. Beasley, J. C. Bravman, T. H. Geballe, C. Webb, K. E. von Dessonneck, and F. Turner, Appl. Phys. Lett. 53(17), 1660-1662 (1988).
http://dx.doi.org/10.1063/1.100443
13.
13.B. R. Johnson, K. M. Beauchamp, T. Wang, J.-X. Liu, K. A. McGreer, J.-C. Wan, M. Tuominen, Y.-J. Zhang, M. L. Mecartney, and A. M. Goldman, Appl. Phys. Lett. 56(19), 1911-1913 (1990).
http://dx.doi.org/10.1063/1.103225
14.
14.D. D. Berkley, B. R. Johnson, N. Anand, K. M. Beauchamp, L. E. Conroy, A. M. Goldman, J. Maps, K. Mauersberger, M. L. Mecartney, J. Morton, M. Tuominen, and Y.-J. Zhang, Appl. Phys. Lett. 53(20), 1973-1975 (1988).
http://dx.doi.org/10.1063/1.100489
15.
15.J. Kwo, M. Hong, D. J. Trevor, R. M. Fleming, A. E. White, R. C. Farrow, A. R. Kortan, and K. T. Short, Appl. Phys. Lett. 53(26), 2683-2685 (1988).
http://dx.doi.org/10.1063/1.100545
16.
16.H. Nonaka, T. Shimizu, and K. Arai, Appl. Phys. Lett. 57(26), 2850-2852 (1990).
http://dx.doi.org/10.1063/1.104200
17.
17.V. S. Achutharaman, K. M. Beauchamp, N. Chandrasekhar, G. C. Spalding, B. R. Johnson, and A. M. Goldman, Thin Solid Films 216(1), 14-20 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90861-5
18.
18.J. P. Locquet, C. Gerber, A. Cretton, Y. Jaccard, E. Williams, and E. Mächler, Appl. Phys. A: Solids Surf. 57(2), 211-215 (1993).
http://dx.doi.org/10.1007/BF00331448
19.
19.M. Naito and H. Sato, Appl. Phys. Lett. 67(17), 2557-2559 (1995).
http://dx.doi.org/10.1063/1.114431
20.
20.M. Naito, H. Sato, and H. Yamamoto, Physica C 293(1-4), 36-43 (1997).
http://dx.doi.org/10.1016/S0921-4534(97)01510-4
21.
21.Y. Enomoto, T. Murakami, and K. Moriwaki, Jpn. J. Appl. Phys., Part 2 28(8), L1355-L1357 (1989).
http://dx.doi.org/10.1143/JJAP.28.L1355
22.
22.E. S. Hellman, E. H. Hartford, and E. M. Gyorgy, Appl. Phys. Lett. 58(12), 1335-1337 (1991).
http://dx.doi.org/10.1063/1.104302
23.
23.E. S. Hellman, E. H. Hartford, and R. M. Fleming, Appl. Phys. Lett. 55(20), 2120-2122 (1989).
http://dx.doi.org/10.1063/1.102343
24.
24.E. S. Hellman and E. H. Hartford, J. Vac. Sci. Technol., B 8(2), 332-335 (1990).
http://dx.doi.org/10.1116/1.585064
25.
25.D. G. Schlom, A. F. Marshall, J. T. Sizemore, Z. J. Chen, J. N. Eckstein, I. Bozovic, K. E. von Dessonneck, J. S. Harris, Jr., and J. C. Bravman, J. Cryst. Growth 102(3), 361-375 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90393-Y
26.
26.D. G. Schlom, J. N. Eckstein, I. Bozovic, Z. J. Chen, A. F. Marshall, K. E. von Dessonneck, and J. S. Harris, Jr., in Growth of Semiconductor Structures and High-Tc Thin Films on Semiconductors (SPIE, Bellingham, 1990), Vol. 1285, pp. 234-247.
27.
27.M. E. Klausmeier-Brown, G. F. Virshup, I. Bozovic, and J. N. Eckstein, Appl. Phys. Lett. 60(22), 2806-2808 (1992).
http://dx.doi.org/10.1063/1.106834
28.
28.A. Brazdeikis, A. Vailionis, and A. S. Flodström, Physica C 235-240, 711-712 (1994).
http://dx.doi.org/10.1016/0921-4534(94)91579-2
29.
29.D. G. Schlom and J. S. Harris, Jr., in Molecular Beam Epitaxy: Applications to Key Materials, edited by R. F. C. Farrow (Noyes, Park Ridge, 1995), pp. 505-622.
30.
30.J. Eckstein and I. Bozovic, Annu. Rev. Mater. Sci. 25, 679-709 (1995).
http://dx.doi.org/10.1146/annurev.ms.25.080195.003335
31.
31.Z. Sitar, F. Gitmans, W. Liu, and P. Gunter, in Epitaxial Oxide Thin Films II, edited byJ. S. Speck, D. K. Fork, R. M. Wolf, and T. Shiosaki (Materials Research Society, Pittsburgh, 1996), Vol. 401, pp. 255-260.
32.
32.R. A. McKee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, Appl. Phys. Lett. 59(7), 782-784 (1991).
http://dx.doi.org/10.1063/1.105341
33.
33.R. A. McKee, F. J. Walker, E. D. Specht, G. E. Jellison, Jr., and L. A. Boatner, Phys. Rev. Lett. 72(17), 2741-2744 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2741
34.
34.T. Tsurumi, T. Suzuki, M. Yamane, and M. Daimon, Jpn. J. Appl. Phys., Part 1 33(9B), 5192-5195 (1994).
http://dx.doi.org/10.1143/JJAP.33.5192
35.
35.C. D. Theis and D. G. Schlom, J. Cryst. Growth 174(1-4), 473-479 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)01144-X
36.
36.C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, and G. W. Brown, Thin Solid Films 325, 107-114 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00507-0
37.
37.C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72(22), 2817-2819 (1998).
http://dx.doi.org/10.1063/1.121468
38.
38.S. Migita, H. Ota, H. Fujino, Y. Kasai, and S. Sakai, J. Cryst. Growth 200(1-2), 161-168 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01243-3
39.
39.I. Bozovic, J. N. Eckstein, and G. F. Virshup, Physica C 235-240(1), 178-181 (1994).
http://dx.doi.org/10.1016/0921-4534(94)91342-0
40.
40.J. N. Eckstein, I. Bozovic, M. Rzchowski, J. O’Donnell, B. Hinaus, and M. Onellion, in Epitaxial Oxide Thin Films II, edited by J. S. Speck, D. K. Fork, R. M. Wolf, and T. Shiosaki (Materials Research Society, Pittsburgh, 1996), Vol. 40, pp. 467-471.
41.
41.L. Maritato and A. Y. Petrov, J. Magn. Magn. Mater. 272-276(2), 1135-1136 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.761
42.
42.J. N. Eckstein, I. Bozovic, J. O’Donnell, M. Onellion, and M. S. Rzchowski, Appl. Phys. Lett. 69(9), 1312-1314 (1995).
http://dx.doi.org/10.1063/1.117402
43.
43.G. M. Roesler, Jr., M. E. Filipkowski, P. R. Broussard, Y. U. Idzerda, M. S. Osofsky, and R. J. Soulen, Jr., in Superconducting Superlattices and Multilayers, edited by I. Bozovic (SPIE, Bellingham, 1994), Vol. 2157, pp. 285-290.
http://dx.doi.org/10.1117/12.179175
44.
44.N. Iwata, G. Pindoria, T. Morishita, and K. Kohn, J. Phys. Soc. Jpn. 69(1), 230-236 (2000).
http://dx.doi.org/10.1143/JPSJ.69.230
45.
45.J. Lettieri, V. Vaithyanathan, S. K. Eah, J. Stephens, V. Sih, D. D. Awschalom, J. Levy, and D. G. Schlom, Appl. Phys. Lett. 83(5), 975-977 (2003).
http://dx.doi.org/10.1063/1.1593832
46.
46.A. Schmehl, V. Vaithyanathan, A. Herrnberger, S. Thiel, C. Richter, M. Liberati, T. Heeg, M. Röckerath, L. Fitting Kourkoutis, S. Mühlbaur, P. Böni, D. A. Muller, Y. Barash, J. Schubert, Y. Idzerda, J. Mannhart, and D. G. Schlom, Nat. Mater. 6(11), 882-887 (2007).
http://dx.doi.org/10.1038/nmat2012
47.
47.S. A. Chambers, Surf. Sci. Rep. 39(5-6), 105-180 (2000).
http://dx.doi.org/10.1016/S0167-5729(00)00005-4
48.
48.J. Kabelac, S. Ghosh, P. Dobal, and R. Katiyar, J. Vac. Sci. Technol., B 25(3), 1049-1052 (2007).
http://dx.doi.org/10.1116/1.2715992
49.
49.J. F. Ihlefeld, A. Kumar, V. Gopalan, D. G. Schlom, Y. B. Chen, X. Q. Pan, T. Heeg, J. Schubert, X. Ke, P. Schiffer, J. Orenstein, L. W. Martin, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. 91(7), 071922 (2007).
http://dx.doi.org/10.1063/1.2767771
50.
50.J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92(14), 142908 (2008).
http://dx.doi.org/10.1063/1.2901160
51.
51.S. Imada, S. Shouriki, E. Tokumitsu, and H. Ishiwara, Jpn. J. Appl. Phys., Part 1 37(12A), 6497-6501 (1998).
http://dx.doi.org/10.1143/JJAP.37.6497
52.
52.Y. Chye, T. Liu, D. Li, K. Lee, D. Lederman, and T. H. Myers, Appl. Phys. Lett. 88(13), 132903 (2006).
http://dx.doi.org/10.1063/1.2189832
53.
53.J. A. Moyer, R. Misra, J. A. Mundy, C. M. Brooks, J. T. Heron, D. A. Muller, D. G. Schlom, and P. Schiffer, APL Mater. 2, 012106 (2014).
http://dx.doi.org/10.1063/1.4861795
54.
54.I. Bozovic, J. N. Eckstein, G. F. Virshup, A. Chaiken, M. Wall, R. Howell, and M. Fluss, J. Supercond. 7(1), 187-195 (1994).
http://dx.doi.org/10.1007/BF00730392
55.
55.I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature 422(6934), 873-875 (2003).
http://dx.doi.org/10.1038/nature01544
56.
56.J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 74(19), 2851-2853 (1999).
http://dx.doi.org/10.1063/1.124035
57.
57.D. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Mater. Sci. Eng. B 87(3), 282-291 (2001).
http://dx.doi.org/10.1016/S0921-5107(01)00726-7
58.
58.M. R. Warusawithana, E. V. Colla, J. N. Eckstein, and M. B. Weissman, Phys. Rev. Lett. 90(3), 036802 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.036802
59.
59.W. Tian, J. C. Jiang, X. Q. Pan, J. H. Haeni, Y. L. Li, L. Q. Chen, D. G. Schlom, J. B. Neaton, K. M. Rabe, and Q. X. Jia, Appl. Phys. Lett. 89(9), 092905 (2006).
http://dx.doi.org/10.1063/1.2335367
60.
60.D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C. B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe, and X. X. Xi, Science 313(5793), 1614-1616 (2006).
http://dx.doi.org/10.1126/science.1130306
61.
61.A. Soukiassian, W. Tian, V. Vaithyanathan, J. H. Haeni, L. Q. Chen, X. X. Xi, D. G. Schlom, D. A. Tenne, H. P. Sun, X. Q. Pan, K. J. Choi, C. B. Eom, Y. L. Li, Q. X. Jia, C. Constantin, R. M. Feenstra, M. Bernhagen, P. Reiche, and R. Uecker, J. Mater. Res. 23(5), 1417-1432 (2008).
http://dx.doi.org/10.1557/JMR.2008.0181
62.
62.A. Bhattacharya, X. Zhai, M. Warusawithana, J. N. Eckstein, and S. D. Bader, Appl. Phys. Lett. 90(22), 222503 (2007).
http://dx.doi.org/10.1063/1.2745205
63.
63.S. J. May, A. B. Shah, S. G. E. te Velthuis, M. R. Fitzsimmons, J. M. Zuo, X. Zhai, J. N. Eckstein, S. D. Bader, and A. Bhattacharya, Phys. Rev. B 77(17), 174409 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.174409
64.
64.C. Adamo, X. Ke, P. Schiffer, A. Soukiassian, M. Warusawithana, L. Maritato, and D. G. Schlom, Appl. Phys. Lett. 92(11), 112508 (2008).
http://dx.doi.org/10.1063/1.2842421
65.
65.A. Bhattacharya, S. J. May, S. G. E. te Velthuis, M. Warusawithana, X. Zhai, A. B. Shah, J.-M. Zuo, M. R. Fitzsimmons, S. D. Bader, and J. N. Eckstein, Phys. Rev. Lett. 100(25), 257203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.257203
66.
66.E. J. Monkman, C. Adamo, J. A. Mundy, D. E. Shai, J. W. Harter, D. Shen, B. Burganov, D. A. Muller, D. G. Schlom, and K. M. Shen, Nat. Mater. 11(10), 855-859 (2012).
http://dx.doi.org/10.1038/nmat3405
67.
67.G. A. Cook, A. D. Kiffer, C. V. Klumpp, A. H. Malik, and L. A. Spence, in Ozone Chemistry and Technology, Advances in Chemistry Series Vol. 21 (American Chemical Society, Washington D.C., 1959), pp. 44-52.
68.
68.M. E. Klausmeier-Brown, J. N. Eckstein, I. Bozovic, and G. F. Virshup, Appl. Phys. Lett. 60(5), 657-659 (1992).
http://dx.doi.org/10.1063/1.106584
69.
69.S. J. Benerofe, C. H. Ahn, M. M. Wang, K. E. Kihlstrom, K. B. Do, S. B. Arnason, M. M. Fejer, T. H. Geballe, M. R. Beasley, and R. H. Hammond, J. Vac. Sci. Technol., B 12(2), 1217-1220 (1994).
http://dx.doi.org/10.1116/1.587048
70.
70.C. Lu and Y. Guan, J. Vac. Sci. Technol., A 13(3), 1797-1801 (1995).
http://dx.doi.org/10.1116/1.579771
71.
71.W. Wang, R. H. Hammond, M. M. Fejer, C. H. Ahn, M. R. Beasley, M. D. Levenson, and M. L. Bortz, Appl. Phys. Lett. 67(10), 1375-1377 (1995).
http://dx.doi.org/10.1063/1.115538
72.
72.B. Utz, S. Rieder-Zecha, and H. Kinder, IEEE Trans. Appl. Supercond. 7(2), 1181-1184 (1997).
http://dx.doi.org/10.1109/77.620706
73.
73.W. Wang, R. H. Hammond, M. M. Fejer, and M. R. Beasley, J. Vac. Sci. Technol., A 17(5), 2676-2684 (1999).
http://dx.doi.org/10.1116/1.581929
74.
74.Y. Du, T. C. Droubay, A. V. Liyu, G. Li, and S. A. Chambers, Appl. Phys. Lett. 104(16), 163110 (2014).
http://dx.doi.org/10.1063/1.4873544
75.
75.Y. Du and S. A. Chambers, Appl. Phys. Lett. 105(16), 163113 (2014).
http://dx.doi.org/10.1063/1.4898638
76.
76.J. H. Haeni, C. D. Theis, and D. G. Schlom, J. Electroceram. 4(2/3), 385-391 (2000).
http://dx.doi.org/10.1023/A:1009947517710
77.
77.J. R. Arthur, Jr., J. Appl. Phys. 39(8), 4032-4034 (1968).
http://dx.doi.org/10.1063/1.1656901
78.
78.A. Y. Cho, Surf. Sci. 17(2), 494-503 (1969).
http://dx.doi.org/10.1016/0039-6028(69)90125-3
79.
79.A. Y. Cho, J. Appl. Phys. 41(7), 2780-2786 (1970).
http://dx.doi.org/10.1063/1.1659315
80.
80.A. Y. Cho, J. Appl. Phys. 42(5), 2074-2081 (1971).
http://dx.doi.org/10.1063/1.1660490
81.
81.R. Heckingbottom, G. J. Davies, and K. A. Prior, Surf. Sci. 132(1-3), 375-389 (1983).
http://dx.doi.org/10.1016/0039-6028(83)90548-4
82.
82.H. Seki and A. Koukitu, J. Cryst. Growth 78(2), 342-352 (1986).
http://dx.doi.org/10.1016/0022-0248(86)90070-9
83.
83.J. Y. Tsao, J. Cryst. Growth 110(3), 595-603 (1991).
http://dx.doi.org/10.1016/0022-0248(91)90297-I
84.
84.J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, Boston, 1993), pp. 65-88.
85.
85.S. Migita, Y. Kasai, H. Ota, and S. Sakai, Appl. Phys. Lett. 71(25), 3712-3714 (1997).
http://dx.doi.org/10.1063/1.120490
86.
86.J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, and D. G. Schlom, Appl. Phys. Lett. 96(26), 262905 (2010).
http://dx.doi.org/10.1063/1.3457786
87.
87.S. Stoughton, M. Showak, Q. Mao, P. Koirala, D. A. Hillsberry, S. Sallis, L. F. Kourkoutis, K. Nguyen, L. F. J. Piper, D. A. Tenne, N. J. Podraza, D. A. Muller, C. Adamo, and D. G. Schlom, APL Mater. 1(4), 042112 (2013).
http://dx.doi.org/10.1063/1.4824041
88.
88.R. W. Ulbricht, A. Schmehl, T. Heeg, J. Schubert, and D. G. Schlom, Appl. Phys. Lett. 93(10), 102105 (2008).
http://dx.doi.org/10.1063/1.2973180
89.
89.C. M. Brooks, R. Misra, J. A. Mundy, L. A. Zhang, B. S. Holinsworth, K. R. O’Neal, T. Heeg, W. Zander, J. Schubert, J. L. Musfeldt, Z. K. Liu, D. A. Muller, P. Schiffer, and D. G. Schlom, Appl. Phys. Lett. 101(13), 132907 (2012).
http://dx.doi.org/10.1063/1.4755765
90.
90.K. Endo, S. Saya, S. Masawa, and S. Yoshida, Thin Solid Films 206(1-2), 143-145 (1991).
http://dx.doi.org/10.1016/0040-6090(91)90409-Q
91.
91.L. King, K. Y. Hsieh, D. J. Lichtenwalner, and A. I. Kingon, Appl. Phys. Lett. 59(23), 3045-3047 (1991).
http://dx.doi.org/10.1063/1.105788
92.
92.B. Jalan, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 95(3), 032906 (2009).
http://dx.doi.org/10.1063/1.3184767
93.
93.P. Moetakef, J. Y. Zhang, S. Raghavan, A. P. Kajdos, and S. Stemmer, J. Vac. Sci. Technol., A 31(4), 041503 (2013).
http://dx.doi.org/10.1116/1.4804180
94.
94.Y. Matsubara, K. S. Takahashi, Y. Tokura, and M. Kawasaki, Appl. Phys. Express 7(12), 125502 (2014).
http://dx.doi.org/10.7567/APEX.7.125502
95.
95.M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Appl. Phys. Lett. 88(19), 192907 (2006).
http://dx.doi.org/10.1063/1.2198088
96.
96.D. G. Schlom, L. Q. Chen, C. B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annu. Rev. Mater. Res. 37(1), 589-626 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
97.
97.M. D. Biegalski, D. D. Fong, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, T. Heeg, J. Schubert, W. Tian, C. T. Nelson, X. Q. Pan, M. E. Hawley, M. Bernhagen, P. Reiche, R. Uecker, S. Trolier-McKinstry, and D. G. Schlom, J. Appl. Phys. 104(11), 114109 (2008).
http://dx.doi.org/10.1063/1.3037216
98.
98.D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91(8), 2429-2454 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02556.x
99.
99.C. H. Lee, N. J. Podraza, Y. Zhu, R. F. Berger, S. Shen, M. Sestak, R. W. Collins, L. F. Kourkoutis, J. A. Mundy, H. Q. Wang, Q. Mao, X. X. Xi, L. J. Brillson, J. B. Neaton, D. A. Muller, and D. G. Schlom, Appl. Phys. Lett. 102(12), 122901 (2013).
http://dx.doi.org/10.1063/1.4798241
100.
100.L. Yan, H. Niu, C. A. Bridges, P. A. Marshall, J. Hadermann, G. van Tendeloo, P. R. Chalker, and M. J. Rosseinsky, Angew. Chem., Int. Ed. 46(24), 4539-4542 (2007).
http://dx.doi.org/10.1002/anie.200700119
101.
101.L. Yan, H. J. Niu, G. V. Duong, M. R. Suchomel, J. Bacsa, P. R. Chalker, J. Hadermann, G. van Tendeloo, and M. J. Rosseinsky, Chem. Sci. 2(2), 261-272 (2011).
http://dx.doi.org/10.1039/C0SC00482K
102.
102.T. Kawai, Y. Egami, H. Tabata, and S. Kawai, Nature 349(6306), 200 (1991).
http://dx.doi.org/10.1038/349200a0
103.
103.R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81(14), 3014-3017 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3014
104.
104.H. Li, X. Hu, Y. Wei, Z. Yu, X. Zhang, R. Droopad, A. A. Demkov, J. Edwards, Jr., K. Moore, W. Ooms, J. Kulik, and P. Fejes, J. Appl. Phys. 93(8), 4521-4525 (2003).
http://dx.doi.org/10.1063/1.1562001
105.
105.M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. L. Li, L. Fitting Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D. A. Muller, L. Q. Chen, J. Levy, and D. G. Schlom, Science 324(5925), 367-370 (2009).
http://dx.doi.org/10.1126/science.1169678
106.
106.J. W. Park, S. H. Baek, C. W. Bark, M. D. Biegalski, and C. B. Eom, Appl. Phys. Lett. 95(6), 061902 (2009).
http://dx.doi.org/10.1063/1.3202398
107.
107.X. Y. Zhou, J. Miao, X. B. Lu, P. F. Lee, J. Y. Dai, H. L. W. Chan, C. L. Choy, and Y. Wang, Integr. Ferroelectr. 86(1), 109-116 (2006).
http://dx.doi.org/10.1080/10584580601085222
108.
108.J. H. Lee, X. Ke, N. J. Podraza, L. F. Kourkoutis, T. Heeg, M. Roeckerath, J. W. Freeland, C. J. Fennie, J. Schubert, D. A. Muller, P. Schiffer, and D. G. Schlom, Appl. Phys. Lett. 94(21), 212509 (2009).
http://dx.doi.org/10.1063/1.3133351
109.
109.J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, Nature 466(7309), 954-958 (2010).
http://dx.doi.org/10.1038/nature09331
110.
110.K. Kugimiya, K. Fujita, K. Tanaka, and K. Hirao, J. Magn. Magn. Mater. 310(2), 2268-2270 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.839
111.
111.S. C. Chae, Y. J. Chang, D.-W. Kim, B. W. Lee, I. Choi, and C. U. Jung, J. Electroceram. 22(1-3), 216-220 (2009).
http://dx.doi.org/10.1007/s10832-008-9460-z
112.
112.K. Shimamoto, K. Hatabayashi, Y. Hirose, S. Nakao, T. Fukumura, and T. Hasegawa, Appl. Phys. Lett. 102(4), 042902 (2013).
http://dx.doi.org/10.1063/1.4789778
113.
113.J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Express 4(9), 091101 (2011).
http://dx.doi.org/10.1143/APEX.4.091101
114.
114.Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Rev. 1(1), 011303 (2014).
http://dx.doi.org/10.1063/1.4853535
115.
115.A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315(5817), 1388-1391 (2007).
http://dx.doi.org/10.1126/science.1137430
116.
116.T. A. Cain, A. P. Kajdos, and S. Stemmer, Appl. Phys. Lett. 102(18), 182101 (2013).
http://dx.doi.org/10.1063/1.4804182
117.
117.Y. Kozuka, Y. Hikita, C. Bell, and H. Y. Hwang, Appl. Phys. Lett. 97(1), 012107 (2010).
http://dx.doi.org/10.1063/1.3457994
118.
118.A. P. MacKenzie, J. W. Reiner, A. W. Tyler, L. M. Galvin, S. R. Julian, M. R. Beasley, T. H. Geballe, and A. Kapitulnik, Phys. Rev. B 58(20), 13318 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R13318
119.
119.L. Klein, Y. Kats, A. F. Marshall, J. W. Reiner, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 84(26), 6090-6093 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6090
120.
120.Q. X. Jia, F. Chu, C. D. Adams, X. D. Wu, M. Hawley, J. H. Cho, A. T. Findikoglu, S. R. Foltyn, J. L. Smith, and T. E. Mitchell, J. Mater. Res. 11(9), 2263-2268 (1996).
http://dx.doi.org/10.1557/JMR.1996.0287
121.
121.J. A. Moyer, C. Eaton, and R. Engel-Herbert, Adv. Mater. 25(26), 3578-3582 (2013).
http://dx.doi.org/10.1002/adma.201300900
122.
122.H. Koinuma, M. Yoshimoto, H. Nagata, and T. Tsukahara, Solid State Commun. 80(1), 9-13 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90588-M
123.
123.W. C. Sheets, B. Mercey, and W. Prellier, Appl. Phys. Lett. 91(19), 192102 (2007).
http://dx.doi.org/10.1063/1.2805222
124.
124.T. Yamasaki, K. Ueno, A. Tsukazaki, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 98(8), 082116 (2011).
http://dx.doi.org/10.1063/1.3557050
125.
125. This Perspective is based on a tutorial presented at the Fall 2013 Materials Research Society Meeting, Boston, Massachusetts, December 2013. It is available online at http://www.prolibraries.com/mrs/?select=session&sessionID=2847.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4919763
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4919763
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4919763
2015-05-26
2016-09-28

Abstract

Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4919763.html;jsessionid=ZkxXj3v2RHjxxGppOV7nviQZ.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4919763&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4919763&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4919763'
Top,Right1,Right2,Right3,