Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4919803
1.
1.E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
2.
2.H. Takagi and H. Y. Hwang, Science 327, 1601 (2010).
http://dx.doi.org/10.1126/science.1182541
3.
3.J. Manhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
4.
4.P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2(1), 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
5.
5.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
6.
6.J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011).
http://dx.doi.org/10.1002/adma.201101152
7.
7.O. E. Peil, M. Ferrero, and A. Georges, Phys. Rev. B 90, 045128 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.045128
8.
8.D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annu. Rev. Mater. Res. 37(1), 589 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
9.
9.J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227203
10.
10.M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, Nat. Mater. 11(3), 195 (2012).
http://dx.doi.org/10.1038/nmat3224
11.
11.E. J. Moon, P. V. Balachandran, B. J. Kirby, D. J. Keavney, R. J. Sichel-Tissot, C. M. Schlepütz, E. Karapetrova, X. M. Cheng, J. M. Rondinelli, and S. J. May, Nano Lett. 14, 2509 (2014).
http://dx.doi.org/10.1021/nl500235f
12.
12.J. M. Rondinelli, S. J. May, and J. W. Freeland, MRS Bull. 37(03), 261 (2012).
http://dx.doi.org/10.1557/mrs.2012.49
13.
13.F. He, B. O. Wells, and S. M. Shapiro, Phys. Rev. Lett. 94(17), 176101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176101
14.
14.T. T. Fister, H. Zhou, Z. Luo, S. S. A. Seo, S. O. Hruszkewycz, D. L. Proffit, J. A. Eastman, P. H. Fuoss, P. M. Baldo, H. N. Lee, and D. D. Fong, APL Mater. 2(2), 021102 (2014).
http://dx.doi.org/10.1063/1.4865160
15.
15.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
16.
16.M. L. Medarde, J. Phys.: Condens. Matter 9(8), 1679 (1997).
http://dx.doi.org/10.1088/0953-8984/9/8/003
17.
17.G. Catalan, Phase Transitions 81(7-8), 729 (2008).
http://dx.doi.org/10.1080/01411590801992463
18.
18.P. C. Canfield, J. D. Thompson, S. W. Cheong, and L. W. Rupp, Phys. Rev. B 47(18), 12357 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12357
19.
19.J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C. Niedermayer, Phys. Rev. B 45(14), 8209 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8209
20.
20.A. S. Disa, D. P. Kumah, J. H. Ngai, E. D. Specht, D. A. Arena, F. J. Walker, and C. H. Ahn, APL Mater. 1, 032110 (2013).
http://dx.doi.org/10.1063/1.4820431
21.
21.J. Liu, M. Kargarian, M. Kareev, B. Gray, P. J. Ryan, A. Cruz, N. Tahir, Y.-D. Chuang, J. Guo, J. M. Rondinelli, J. W. Freeland, G. A. Fiete, and J. Chakhalian, Nat. Commun. 4, 2714 (2013).
http://dx.doi.org/10.1038/ncomms3714
22.
22.R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J.-M. Triscone, Adv. Mater. 22(48), 5517 (2010).
http://dx.doi.org/10.1002/adma.201003241
23.
23.S. Catalano, M. Gibert, V. Bisogni, O. E. Peil, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, A. Georges, G. A. Sawatzky, T. Schmitt, and J.-M. Triscone, APL Mater. 2, 116110 (2014).
http://dx.doi.org/10.1063/1.4902138
24.
24.P.-H. Xiang, N. Zhong, C.-G. Duan, X. D. Tang, Z. G. Hu, P. X. Yang, Z. Q. Zhu, and J. H. Chu, J. Appl. Phys. 114, 243713 (2013).
http://dx.doi.org/10.1063/1.4858455
25.
25.J. Son, B. Jalan, A. P. Kajdos, L. Balents, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99(19), 192107 (2011).
http://dx.doi.org/10.1063/1.3659310
26.
26.X. K. Lian, F. Chen, X. L. Tan, P. F. Chen, L. F. Wang, G. Y. Gao, S. W. Jin, and W. B. Wu, Appl. Phys. Lett. 103, 172110 (2013).
http://dx.doi.org/10.1063/1.4826678
27.
27.M. Hepting, M. Minola, A. Frano, G. Cristiani, G. Logvenov, E. Schierle, M. Wu, M. Bluschke, E. Weschke, H. U. Habermeier, E. Benckiser, M. Le Tacon, and B. Keimer, Phys. Rev. Lett. 113(22), 227206 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.227206
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.4919803 for a more detailed description.[Supplementary Material]
29.
29.G. Catalan, R. M. Bowman, and J. M. Gregg, Phys. Rev. B 62(12), 7892 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7892
30.
30.D. G. Hawthorn, F. He, L. Venema, H. Davis, A. J. Achkar, J. Zhang, R. Sutarto, H. Wadati, A. Radi, T. Wilson, G. Wright, K. M. Shen, J. Geck, H. Zhang, V. Novák, and G. A. Sawatzky, Rev. Sci. Instrum. 82, 073104 (2011).
http://dx.doi.org/10.1063/1.3607438
31.
31.A. Frano, E. Schierle, M. W. Haverkort, Y. Lu, M. Wu, S. Blanco-Canosa, U. Nwankwo, A. V. Boris, P. Wochner, G. Cristiani, H. U. Habermeier, G. Logvenov, V. Hinkov, E. Benckiser, V. Weschke, and B. Keimer, Phys. Rev. Lett. 111(10), 106804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106804
32.
32.J. L. Garcia-Muñoz, J. Rodriguez-Carvajal, and P. Lacorre, Europhys. Lett. 20(3), 241 (1992).
http://dx.doi.org/10.1209/0295-5075/20/3/009
33.
33.V. Scagnoli, U. Staub, A. M. Mulders, M. Janousch, G. I. Meijer, G. Hammerl, J. M. Tonnerre, and N. Stojic, Phys. Rev. B 73(10), 100409 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.100409
34.
34.A. D. Caviglia, M. Först, R. Scherwitzl, V. Khanna, H. Bromberger, R. Mankowsky, R. Singla, Y.-D. Chuang, W. S. Lee, O. Krupin, W. F. Schlotter, J. J. Turner, G. L. Dakovski, M. P. Minitti, J. Robinson, V. Scagnoli, S. B. Wilkins, S. A. Cavill, M. Gibert, S. Gariglio, P. Zubko, J.-M. Triscone, J. P. Hill, S. S. Dhesi, and A. Cavalleri, Phys. Rev. B 88, 220401(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.220401
35.
35.W. Marti, P. Fischer, F. Altorfer, H. J. Scheel, and M. Tadin, J. Phys.: Condens. Matter 6, 127 (1994).
http://dx.doi.org/10.1088/0953-8984/6/1/014
36.
36.C. J. Howard, B. J. Kennedy, and B. C. Chakoumakos, J. Phys.: Condens. Matter 12, 349 (2000).
http://dx.doi.org/10.1088/0953-8984/12/4/301
37.
37.F. He, B. O. Wells, Z. G. Ban, S. P. Alpay, S. Grenier, S. M. Shapiro, W. Si, A. Clark, and X. X. Xi, Phys. Rev. B 70(23), 235405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235405
38.
38.I. V. Nikulin, M. A. Novojilov, A. R. Kaul, A. F. Maiorova, and S. N. Mudretsova, Mater. Res. Bull. 39(6), 803 (2004).
http://dx.doi.org/10.1016/j.materresbull.2004.02.002
39.
39.J.-S. Zhou, J. B. Goodenough, and B. Dabrowski, Phys. Rev. Lett. 95, 127204 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.127204
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4919803
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4919803
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4919803
2015-05-04
2016-12-03

Abstract

Bulk NdNiO and thin films grown along the (001) axis display a 1st order metal to insulator transition (MIT) together with a Néel transition at T = 200 K. Here, we show that for NdNiO films deposited on (111) NdGaO, the MIT occurs at T = 335 K and the Néel transition at T = 230 K. By comparing transport and magnetic properties of layers grown on substrates with different symmetries and lattice parameters, we demonstrate a particularly large tuning when the epitaxy is realized on (111) surfaces. We attribute this effect to the specific lattice matching conditions imposed along this direction when using orthorhombic substrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4919803.html;jsessionid=tiZdZuYJOnuJGwh_zAT-8jMC.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4919803&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4919803&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4919803'
Top,Right1,Right2,Right3,