Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 87, 022101 (2005).
2.A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315, 1388 (2007).
3.J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Express 4, 091101 (2011).
4.A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Nat. Mater. 9, 889 (2010).
5.P. D. C. King and T. D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011).
6.J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Annu. Rev. Mater. Res. 44, 117 (2014).
7.R. Ramesh and D. G. Schlom, MRS Bull. 33, 1006 (2008).
8.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, H. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
9.H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B. G. Jeon, K. T. Hong, W. J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Express 5, 061102 (2012).
10.H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B.-G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
11.X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S.-W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
12.A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010).
13.U. Kim, C. Park, T. Ha, R. Kim, H. S. Mun, H. M. Kim, H. J. Kim, T. H. Kim, N. Kim, J. Yu, K. H. Kim, J. H. Kim, and K. Char, APL Mater. 2, 056107 (2014).
14.H. Mun, U. Kim, H. M. Kim, C. Park, T. H. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
15.P. V. Wadekar, J. Alaria, M. O’Sullivan, N. L. O. Flack, T. D. Manning, L. J. Phillips, K. Durose, O. Lozano, S. Lucas, J. B. Claridge, and M. J. Rosseinsky, Appl. Phys. Lett. 105, 052104 (2014).
16.R. J. Cava, P. Gammel, B. Batlogg, J. J. Krajewski, W. F. Peck, L. W. Rupp, R. Felder, and R. B. van Dover, Phys. Rev. B 42, 4815 (1990).
17.T. N. Stanislavchuk, A. A. Sirenko, A. P. Litvinchuk, X. Luo, and S.-W. Cheong, J. Appl. Phys. 112, 044108 (2012).
18.E. Moreira, J. M. Henriques, D. L. Azevedo, E. W. S. Caetano, V. N. Freire, and E. L. Albuquerque, J. Solid State Chem. 187, 186 (2012).
19.H. R. Liu, J. H. Yang, H. J. Xiang, X. G. Gong, and S. H. Wei, Appl. Phys. Lett. 102, 112109 (2013).
20.H. Mizoguchi, P. Chen, P. Boolchand, V. Ksenofontov, C. Felser, P. W. Barnes, and P. M. Woodward, Chem. Mater. 25, 3858 (2013).
21.D. J. Singh, Q. Xu, and K. P. Ong, Appl. Phys. Lett. 104, 011910 (2014).
22.Y. Li, L. Zhang, Y. Ma, and D. J. Singh, APL Mater. 3, 011102 (2015).
23.L. Bjaalie, B. Himmetoglu, L. Weston, A. Janotti, and C. G. VandeWalle, New J. Phys. 16, 025005 (2014).
24.X. Fan, W. Zheng, X. Chen, and D. J. Singh, PLoS One 9, e91423 (2014).
25.S. Sallis, D. O. Scanlon, S. C. Chae, N. F. Quackenbush, D. A. Fischer, J. C. Woicik, J. H. Guo, S. W. Cheong, and L. F. J. Piper, Appl. Phys. Lett. 103, 042105 (2013).
26.H. F. Wang, Q. Z. Liu, F. Chen, G. Y. Gao, W. Wu, and X. H. Chen, J. Appl. Phys. 101, 106105 (2007).
27.H. J. Kim, J. Kim, T. H. Kim, W. J. Lee, B. G. Jeon, J. Y. Park, W. S. Choi, D. W. Jeong, S. H. Lee, J. Yu, T. W. Noh, and K. H. Kim, Phys. Rev. B 88, 125204 (2013).
28.D. O. Scanlon, Phys. Rev. B 87, 161201 (2013).
29.M. Bjorck and G. Andersson, J. Appl. Crystallogr. 40, 1174 (2007).
30.See supplementary material at for details of structural characterizations of films on both SrTiO3 and MgO substrates.[Supplementary Material]

Data & Media loading...


Article metrics loading...



BaSnO has recently been identified as a high mobility wide gap semiconductor with significant potential for room temperature oxide electronics. Here, a detailed study of the high pressure oxygen sputter-deposition, microstructure, morphology, and stoichiometry of epitaxial BaSnO on SrTiO(001) and MgO(001) is reported, optimized conditions resulting in single-phase, relaxed, close to stoichiometric films. Most significantly, vacuum annealing is established as a facile route to -doped BaSnO, leading to electron densities above 1019 cm−3, 5 mΩ cm resistivities, and room temperature mobility of 20 cm2 V−1 s−1 in 300-Å-thick films on MgO(001). Mobility limiting factors, and the substantial scope for their improvement, are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd