Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4922152
1.
1.Handbook of Transparent Conductors, edited by D. Ginley, H. Hosono, and D. Paine (Springer, New York, 2010).
2.
2.R. G. Gordon, MRS Bull. 25, 52 (2000).
http://dx.doi.org/10.1557/mrs2000.151
3.
3.H. Morkoc and Ü. Özgür, Zinc Oxide: Fundamentals Materials and Device Technology (Wiley-VCH, Weinheim, 2009).
4.
4.D. G. Thomas, J. Phys. Chem. Solids 9, 31 (1958).
http://dx.doi.org/10.1016/0022-3697(59)90087-3
5.
5.K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, J. Ceram. Soc. Jpn. 115, 254 (2007).
http://dx.doi.org/10.2109/jcersj.115.254
6.
6.S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, and W. Möller, Appl. Phys. Lett. 94, 042103 (2009).
http://dx.doi.org/10.1063/1.3074373
7.
7.I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F. Fenske, and W. Fuhs, Thin Solid Films 330, 108 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00608-7
8.
8.C. Ahn, N. Bennett, S. T. Dunham, and N. E. B. Cowern, Phys. Rev. B 79, 073201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.073201
9.
9.E. Vasile, S. Mihaiu, and R. Plugaru, in International Semiconductor Conference (CAS) (IEEE, Romania, 2012), p. 329.
10.
10.Y. Kinemuchi, H. Nakano, H. Kaga, S. Tanaka, K. Uematsu, and K. Watari, J. Am. Ceram. Soc. 94, 2339 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04373.x
11.
11.Y. Sato, T. Yamamoto, and Y. Ikuhara, J. Am. Ceram. Soc. 90, 337 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01481.x
12.
12.R. Schlesiger, C. Oberdorfer, R. Wurz, G. Greiwe, P. Stender, M. Artmeier, P. Pelka, F. Spaleck, and G. Schmitz, Rev. Sci. Instrum. 81, 043703 (2010).
http://dx.doi.org/10.1063/1.3378674
13.
13.M. Mayer, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 177 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00689-4
14.
14.N. Vogel-Schäuble, Y. E. Romanyuk, S. Yoon, K. J. Saji, S. Populoh, S. Pokrant, M. H. Aguirre, and A. Weidenkaff, Thin Solid Films 520, 6869 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.07.046
15.
15.M. Ceh, H. C. Chen, M. J. Chen, J. R. Yang, and M. Shiojiri, Mater. Trans. 51, 219 (2010).
http://dx.doi.org/10.2320/matertrans.mc200902
16.
16.C. R. Gorla, W. E. Mayo, S. Liang, and Y. Lu, J. Appl. Phys. 87, 3736 (2000).
http://dx.doi.org/10.1063/1.372454
17.
17.Y. W. Jang, S. Bang, H. Jeon, and J. Y. Lee, Phys. Status Solidi B 248, 1634 (2011).
http://dx.doi.org/10.1002/pssb.201046551
18.
18.P. Liley, R. Reid, and E. Buck, in CRC Handbook of Chemistry and Physics, edited byR. Weast and M. Astle (CRC Press, Florida, 1982), p. 147.
19.
19.A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 30, 479 (1968).
http://dx.doi.org/10.1016/0022-1902(68)80475-0
20.
20.S. Hofmann and P. Lejcek, Interface Sci. 3, 241 (1996).
http://dx.doi.org/10.1007/BF00194704
21.
21.W. Körner and C. Elsässer, Phys. Rev. B 81, 085324 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085324
22.
22.H. Morikawa, H. Kurata, and M. Fujita, J. Electron Microsc. 49, 67 (2000).
http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023794
23.
23.D. J. Payne and E. A. Marquis, Chem. Mater. 23, 1085 (2011).
http://dx.doi.org/10.1021/cm103439e
24.
24.I. Langmuir, Proc. Natl. Acad. Sci. 3, 141 (1917).
http://dx.doi.org/10.1073/pnas.3.3.141
25.
25.C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Can. Metall. Q. 23, 309 (1984).
http://dx.doi.org/10.1179/cmq.1984.23.3.309
26.
26.J. A. Venables, Introduction to Surface and Thin Film Processes (Cambridge University Press, Cambridge, 2003).
27.
27.I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918).
http://dx.doi.org/10.1021/ja02242a004
28.
28.M. Lorenz, C. Schmidt, G. Benndorf, T. Bontgen, H. Hochmuth, R. Bottcher, A. Poppl, D. Spemann, and M. Grundmann, J. Phys. D: Appl. Phys. 46, 065311 (2013).
http://dx.doi.org/10.1088/0022-3727/46/6/065311
29.
29.A. Bikowski and K. Ellmer, J. Appl. Phys. 114, 063709 (2013).
http://dx.doi.org/10.1063/1.4817376
30.
30.C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys. 95, 1911 (2004).
http://dx.doi.org/10.1063/1.1641524
31.
31.M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, and M. Wuttig, J. Appl. Phys. 101, 074903 (2007).
http://dx.doi.org/10.1063/1.2715554
32.
32.A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Jpn. J. Appl. Phys., Part 2 35, L56 (1996).
http://dx.doi.org/10.1143/JJAP.35.L56
33.
33.T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, Thin Solid Films 528, 19 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.07.140
34.
34.A. Bikowski, T. Welzel, and K. Ellmer, Appl. Phys. Lett. 102, 242106 (2013).
http://dx.doi.org/10.1063/1.4811647
35.
35.A. Bikowski and K. Ellmer, J. Appl. Phys. 116, 143704 (2014).
http://dx.doi.org/10.1063/1.4896839
36.
36.S. Cornelius, private communication (2013).
37.
37.M. Gabas, A. Landa-Canovas, J. L. Costa-Kramer, F. Agullo-Rueda, A. R. Gonzalez-Elipe, P. Diaz-Carrasco, J. Hernandez-Moro, I. Lorite, P. Herrero, P. Castillero, A. Barranco, and J. R. Ramos-Barrado, J. Appl. Phys. 113, 163709 (2013).
http://dx.doi.org/10.1063/1.4803063
38.
38.H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, Appl. Phys. Lett. 77, 3761 (2000).
http://dx.doi.org/10.1063/1.1331089
39.
39.C. Kittel, Introduction to Solid State Physics (Wiley, USA, 2005).
40.
40.C. Agashe, O. Kluth, G. Schope, H. Siekmann, J. Hüpkes, and B. Rech, Thin Solid Films 442, 167 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00966-0
41.
41.T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., Part 2 24, L781 (1985).
http://dx.doi.org/10.1143/JJAP.24.L781
42.
42.D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, Opt. Eng. 52, 033801 (2013).
http://dx.doi.org/10.1117/1.OE.52.3.033801
43.
43.N. Itagaki, K. Kuwahara, K. Nakahara, D. Yamashita, G. Uchida, K. Koga, and M. Shiratani, Appl. Phys. Express 4, 011101 (2011).
http://dx.doi.org/10.1143/APEX.4.011101
44.
44.K. Sago, H. Kuramochi, H. Iigusa, K. Utsumi, and H. Fujiwara, J. Appl. Phys. 115, 133505 (2014).
http://dx.doi.org/10.1063/1.4870443
45.
45.K. Fuchs, Math. Proc. Cambridge Philos. Soc. 11, 100 (1938).
http://dx.doi.org/10. 1017/S0305004100019952
46.
46.E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
http://dx.doi.org/10.1080/00018735200101151
47.
47.G. Haacke, Annu. Rev. Mater. Sci. 7, 73 (1977).
http://dx.doi.org/10.1146/annurev.ms.07.080177.000445
48.
48.T. Nakamura, Y. Yamada, T. Kusumori, H. Minoura, and H. Muto, Thin Solid Films 411, 60 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00188-8
49.
49.C. Sui, B. Lin, T. Xu, B. Yan, and G. Wei, Optoelectron. Lett. 8, 205 (2012).
http://dx.doi.org/10.1007/s11801-012-1194-0
50.
50.W. Dewald, V. Sittinger, B. Szyszka, F. Säuberlich, B. Stannowski, D. Kohl, P. Ries, and M. Wuttig, Thin Solid Films 534, 474 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.027
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4922152
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4922152
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4922152
2015-06-08
2016-12-09

Abstract

The spatial distribution of Al in magnetron sputtered ZnO:Al films has been investigated in depth. Two different kinds of inhomogeneities were observed: an enrichment in the bulk of the film and an enrichment at the interface to the substrate. This has been correlated to the electrical properties of the films: the former inhomogeneities can lead to trap states at the grain boundaries limiting the free carrier mobility. The latter can promote the formation of secondary phases, which leads to an electrical inactivation of the dopant. Furthermore, this effect can contribute to the thickness dependence of the electrical properties of ZnO:Al films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4922152.html;jsessionid=iywK0jPlZtiX1-nr8oCtZYa2.x-aip-live-03?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4922152&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4922152&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4922152'
Top,Right1,Right2,Right3,