Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/6/10.1063/1.4922319
1.
1.D. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, Nucl. Instrum. Methods Phys. Res., Sect. A 622, 685 (2010).
http://dx.doi.org/10.1016/j.nima.2010.03.104
2.
2.Cornell Energy Recovery Linac: Science Case Project Definition Design Report, edited byG. H. Hoffstaetter, S. M. Gruner, and M. Tigner (2013), see http://www.classe.cornell.edu/rsrc/Home/Research/ERL/PDDR/PDDR.pdf.
3.
3.N. Chanlek, J. D. Herbert, R. M. Jones, L. B. Jones, K. J. Middleman, and B. L. Militsyn, J. Phys. D: Appl. Phys. 47, 055110 (2014).
http://dx.doi.org/10.1088/0022-3727/47/5/055110
4.
4.C. K. Sinclair, P. A. Adderley, B. M. Dunham, J. C. Hansknecht, P. Hartmann, M. Poelker, J. S. Price, P. M. Rutt, W. J. Schneider, and M. Steigerwald, Phys. Rev. Spec. Top.–Accel. Beams 10, 023501 (2007).
http://dx.doi.org/10.1103/PhysRevSTAB.10.023501
5.
5.D. H. Dowell, S. Z. Bethel, and K. D. Friddell, Nucl. Instrum. Methods Phys. Res., Sect. A 356, 167 (1995).
http://dx.doi.org/10.1016/0168-9002(94)01327-6
6.
6.J. Balewski, J. Bernauer, W. Bertozzi, J. Bessuille, B. Buck, R. Cowan, K. Dow, C. Epstein, P. Fisher, S. Gilad, E. Ihloff, Y. Kahn, A. Kelleher, J. Kelsey, R. Milner, C. Moran, L. Ou, R. Russell, B. Schmookler, J. Thaler, C. Tschalär, C. Vidal, A. Winnebeck, S. Benson, C. Gould, G. Biallas, J. R. Boyce, J. Coleman, D. Douglas, R. Ent, P. Evtushenko, H. C. Fenker, J. Gubeli, F. Hannon, J. Huang, K. Jordan, R. Legg, M. Marchlik, W. Moore, G. Neil, M. Shinn, C. Tennant, R. Walker, G. Williams, S. Zhang, M. Freytsis, R. Fiorito, P. O’Shea, G. Ovanesyan, T. Gunter, N. Kalantarians, M. Kohl, I. Albayrak, M. Carmignotto, T. Horn, D. S. Gunarathne, C. J. Marto, D. L. Olvitt, B. Surrow, X. Lia, R. Beck, R. Schmitz, D. Walther, K. Brinkmann, and H. Zaunig, “DarkLight: A search for dark forces at the Jefferson laboratory free-electron laser facility,” e-print arXiv:1307.4432v2 [physics.ins-det] (2013).
7.
7.A. W. Thomas, “An electron-ion collider at Jefferson lab,” e-print arXiv:0907.4785v1 [hep-ex] (2009).
8.
8.D. E. Persyk, J. Morales, R. McKeighen, and G. Muehllehner, “The quadrant photomultiplier,” IEEE Trans. Nucl. Sci. 26, 364367 (1979).
http://dx.doi.org/10.1109/tns.1979.4329658
9.
9.F. Sannibale, B. Bailey, K. Baptiste, A. Catalano, D. Colomb, J. Corlett, S. De Santis, L. Doolittle, J. Feng, D. Filippetto, G. Huang, R. Kraft, D. Li, M. Messerly, H. Padmore, C. F. Papadopoulos, G. Portmann, M. Prantil, S. Prestemon, J. Qiang, J. Staples, M. Stuart, T. Vecchione, R. Wells, M. Yoon, and M. Zolotorev, “Status of the LBNL normal-conducting CW VHF electron photo-gun,” in Proceedings of the 2010 Free Electron Laser Conference, Malmo, Sweden, August (2010).
10.
10.L. Cultrera, I. Bazarov, J. Conway, B. Dunham, Y. Hwang, Y. Li, X. Liu, T. Moore, R. Merluzzi, K. Smolenski, S. Karkare, J. Maxson, and W. Schaff, “Photocathode R&D at Cornell University,” in Proceedings of IPAC2012, New Orleans, Louisiana, USA (JACoW, 2012), WEOAB02, p.2137.
11.
11.J. Smedley, K. Attenkofer, S. G. Schubert, H. A. Padmore, J. Wong, J. Xie, M. Ruiz-Oses, I. Ben-Zvi, X. Liang, E. M. Muller, and J. DeFazio, “Alkali antimonide photocathodes for everyone,” in Proceedings of IPAC2013, Pasadena, California, USA (JACoW, 2013), THPAC17, pp.1178.
12.
12.D. M. Dunham and C. K. Sinclair, “Charging the cesiator on the Illinoi/CEBAF polarized electron source,” in NPL Polarized source Group Technical Note # 90-9, Nuclear Physics Laboratory (University of Illinois at Urbana-Champaign, IL, USA, 1990).
13.
13.C. Y. Prescott, W. B. Atwood, R. L. A. Cottrell, H. Destaebler, E. L. Garwin, A. Gonidec, R. H. Miller, L. S. Rochester, T. Sato, D. J. Sherden, C. K. Sinclair, S. Stein, and R. E. Taylor, Phys. Lett. B 77, 347 (1978).
http://dx.doi.org/10.1016/0370-2693(78)90722-0
14.
14.M. Succi, R. Canino, and B. Ferrario, Vacuum 35, 579 (1985).
http://dx.doi.org/10.1016/0042-207X(85)90319-7
15.
15.V. V. Balanyuk, A. S. Chernikov, V. F. Krasnov, S. L. Musher, V. E. Ryabchenko, A. M. Prokhorov, I. A. Dubovoi, V. K. Ushakov, and M. Y. Schelev, SPIE Adv. Process. Semicond. Devices 945, 68 (1988).
http://dx.doi.org/10.1117/12.947393
16.
16.Alkali Metal Dispensers Brochure 1789, SAES getters, 20020 Lainate (MI) Italy (2007).
17.
17.T. Vecchione, I. Ben-Zvi, D. H. Dowell, J. Feng, T. Rao, J. Smedley, W. Wan, and H. A. Padmore, Appl. Phys. Lett. 99, 034103 (2011).
http://dx.doi.org/10.1063/1.3612916
18.
18.NKT Photonics A/S Blokken 84, DK-3460 Birkerød Denmark see http://www.nktphotonics.com/superkextreme.
19.
19.M. Suyama, “Latest status of PMTs and related sensors,” in Proceedings of the International Workshop on New photon-detectors, PoS (PD07) 018, Kobe, Japan, June 27-29 (2007).
20.
20.P. Michelato, Nucl. Instrum. Methods Phys. Res Sect. A 393, 455 (1997).
http://dx.doi.org/10.1016/S0168-9002(97)00545-7
21.
21.E. J. Montgomery, D. W. Feldman, P. G. O’Shea, Z. Pan, N. Sennett, K. L. Jensen, and N. A. Moody, J. Directed Energy 3, 66 (2008).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/6/10.1063/1.4922319
Loading
/content/aip/journal/aplmater/3/6/10.1063/1.4922319
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/6/10.1063/1.4922319
2015-06-10
2016-09-28

Abstract

CsKSbphotocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/6/1.4922319.html;jsessionid=Yh7R_mlXCTjP6NELHhtg_Gej.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/6/10.1063/1.4922319&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/6/10.1063/1.4922319&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/6/10.1063/1.4922319'
Top,Right1,Right2,Right3,