Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Kozuka, Y. Hikita, C. Bell, and H. Y. Hwang, “Dramatic mobility enhancements in doped SrTiO3 thin films by defect management,” Appl. Phys. Lett. 97(1), 2107 (2010).
2.J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, “Epitaxial SrTiO3 films with electron mobilities exceeding 30 000 cm2 V−1 s−1,” Nat. Mater. 9(6), 482484 (2010).
3.M. L. Scullin, J. Ravichandran, C. Yu, M. Huijben, J. Seidel, A. Majumdar, and R. Ramesh, “Pulsed laser deposition-induced reduction of SrTiO3 crystals,” Acta Mater. 58(2), 457463 (2010).
4.E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, and L. W. Martin, “Effect of growth induced (non) stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films,” Chem. Mater. 24(2), 331337 (2012).
5.M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, “LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces,” Nat. Commun. 4, 2351 (2013).
6.H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, C. T. Nelson, C. M. Folkman, S. H. Baek, N. Balke, C. M. Brooks, D. A. Tenne, D. G. Schlom, L. Q. Chen, X. Q. Pan, S. V. Kalinin, V. Gopalan, and C. B. Eom, “Ferroelectricity in strain-free SrTiO3 thin films,” Phys. Rev. Lett. 104(19), 197601 (2010).
7.T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, “Defects and transport in complex oxide thin films,” J. Appl. Phys. 103(10), 103703 (2008).
8.S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, and R. Dittmann, “Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry,” Appl. Phys. Lett. 101(13), 131601 (2012).
9.G. Koster, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “Imposed layer-by-layer growth by pulsed laser interval deposition,” Appl. Phys. Lett. 74(24), 3729 (1999).
10.D. Blank, G. Koster, and G. Rijnders, “Epitaxial growth of oxides with pulsed laser interval deposition,” J. Cryst. Growth 211, 98105 (2000).
11.C. Xu, S. Wicklein, A. Sambri, S. Amoruso, M. Moors, and R. Dittmann, “Impact of the interplay between nonstoichiometry and kinetic energy of the plume species on the growth mode of SrTiO3 thin films,” J. Phys. D: Appl. Phys. 47(3), 034009 (2014).
12.G. Liu and Q. Lei, “Stoichiometry of SrTiO3 films grown by pulsed laser deposition,” Appl. Phys. Lett. 100, 202902 (2012).
13.B. Dam, J. Rector, and J. Johansson, “Mechanism of incongruent ablation of SrTiO3,” J. Appl. Phys. 83(6), 33863389 (1998).
14.T. Ohnishi, M. Lippmaa, and T. Yamamoto, “Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition,” Appl. Phys. Lett. 87, 241919 (2005).
15.S. Amoruso and A. Sambri, “Propagation dynamics of a LaMnO laser ablation plume in an oxygen atmosphere,” J. Appl. Phys. 100, 013302 (2006).
16.D. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth,” Thin Solid Films 220, 138145 (1992).
17.M. Strikovski and J. H. Miller, “Pulsed laser deposition of oxides: Why the optimum rate is about 1 Å per pulse,” Appl. Phys. Lett. 73(12), 1733 (1998).
18.J. Boschker, E. Folven, Å. Monsen, E. Wahlstrøm, J. Grepstad, and T. Tybell, “Consequences of high ad-atom energy during pulsed laser deposition of La0.7Sr0.3MnO3,” Cryst. Growth Des. 12, 562566 (2012).
19.P. Willmott, R. Herger, C. Schlepütz, and D. Martoccia, “Energetic surface smoothing of complex metal-oxide thin films,” Phys. Rev. Lett. 96, 176102 (2006).
20.K. Sturm and H.-U. Krebs, “Quantification of resputtering during pulsed laser deposition,” J. Appl. Phys. 90(2), 1061 (2001).
21.G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide,” Appl. Phys. Lett. 73(20), 2920 (1998).
22.See supplementary material at for time dependent RHEED intensity recorded during growth, XRD fitting results and additional experiments varying the thickness of the SrTiO3 films.[Supplementary Material]
23.B. Jalan, P. Moetakef, and S. Stemmer, “Molecular beam epitaxy of SrTiO3 with a growth window,” Appl. Phys. Lett. 95, 032906 (2009).
24.G. Koster, G. Rijnders, D. H. A. Blank, and H. Rogalla, “Surface morphology determined by (001) single-crystal SrTiO3 termination,” Physica C 339, 215230 (2000).
25.S. A. Stepanov, E. A. Kondrashkina, R. Köhler, D. V. Novikov, G. Materlik, and S. M. Durbin, “Dynamical x-ray diffraction of multilayers and superlattices: Recursion matrix extension to grazing angles,” Phys. Rev. B 57(8), 48294841 (1998).
26.J. M. Lebeau, R. Engel-Herbert, B. Jalan, J. Cagnon, P. Moetakef, S. Stemmer, and G. B. Stephenson, “Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction,” Appl. Phys. Lett. 95, 142905 (2009).

Data & Media loading...


Article metrics loading...



The oxidation of species in the plasma plume during pulsed laser deposition controls both the stoichiometry as well as the growth kinetics of the deposited SrTiO thin films, instead of the commonly assumed mass distribution in the plasma plume and the kinetic energy of the arriving species. It was observed by X-ray diffraction that SrTiO stoichiometry depends on the composition of the background gas during deposition, where in a relative small pressure range between 10−2 mbars and 10−1 mbars oxygen partial pressure, the resulting film becomes fully stoichiometric. Furthermore, upon increasing the oxygen (partial) pressure, the growth mode changes from 3D island growth to a 2D layer-by-layer growth mode as observed by reflection high energy electron diffraction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd