Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. H. Hong, J. H. Yun, H. H. Park, and J. Kim, Appl. Phys. Lett. 103, 153504 (2013).
2.G. Socol, M. Socol, N. Stefan, E. Axente, G. Popescu-Pelin, D. Craciun, L. Duta, C. N. Mihailescu, I. N. Mihailescu, A. Stanculescu, D. Visan, V. Sava, A. C. Galca, C. R. Luculescu, and V. Craciun, Appl. Surf. Sci. 260, 4246 (2012).
3.H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. 79, 284 (2001).
4.S. Kaneko, H. Torii, M. Soga, K. Akiyama, M. Iwaya, M. Yoshimoto, and T. Amazawa, Jpn. J. Appl. Phys. 51, 01AC02 (2012).
5.N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J. R. Lee, and F. B. Prinz, Chem. Mater. 22, 47694775 (2010).
6.G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, and D. Bellet, J. Appl. Phys. 114, 183713 (2013).
7.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488492 (2004).
8.W. H. Baek, M. Choi, T. S. Yoon, H. H. Lee, and Y. S. Kim, Appl. Phys. Lett. 96, 133506 (2010).
9.Y. Mi, H. Odaka, and S. Iwata, Jpn. J. Appl. Phys. 38, 3453 (1999).
10.X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, and H. Ma, Appl. Surf. Sci. 254, 66016604 (2008).
11.K. J. Button, C. G. Fonstad, and W. Dreybrodt, Phys. Rev. B 4, 12 (1971).
12.H. Toyosaki, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 93, 132109 (2008).
13.M. E. White, O. Bierwagen, M. Y. Tsai, and J. S. Speck, J. Appl. Phys. 106, 093704 (2009).
14.T. W. Kim, D. U. Lee, J. H. Lee, D. C. Choo, M. Jung, and Y. S. Yoon, J. Appl. Phys. 90, 175 (2001).
15.R. Y. Korotkov, A. J. E. Farran, T. Culp, D. Russo, and C. Roger, J. Appl. Phys. 96, 6445 (2004).
16.J. H. Jo, T. Hur, J. S. Kwak, D. Y. Kwon, Y. Hwang, and H. K. Kim, J. Korean Phys. Soc. 47, S300S303 (2005).
17.B. Zou, P. K. Petrov, and N. McN. Alford, J. Mater. Res. 28(5), 702 (2013).
18.M. Hiratani, Y. Tarutani, T. Fukazawa, M. Okamoto, and K. Takagi, Thin Solid Films 227, 100104 (1993).
19.J. E. Dominguez, X. Q. Pan, and L. Fu, J. Appl. Phys. 91(3), 1060 (2002).
20.Z. Zhu, J. Ma, C. Luan, L. Kong, and Q. Yu, Appl. Surf. Sci. 257, 25162519 (2011).
21.J. E. Dominguez, L. Fu, and X. Q. Pan, Appl. Phys. Lett. 81, 27 (2002).
22.N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
23.D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82(6), 1237 (1999).
24.H. Mun, U. Kim, H. M. Kim, C. Park, T. H. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
25.H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. Mun, B. G. Jeon, K. T. Hong, W. J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Express 5, 061102 (2012).

Data & Media loading...


Article metrics loading...



We investigated the electronic transport properties of epitaxial SnO thin films on r-plane sapphire substrates. The films were grown by pulsed laser deposition technique and its epitaxial growth direction was [101] and the in-plane alignment was of SnO [010]// . When the SnO films were grown in the oxygen pressure of 30 mTorr, we have found the electron mobility of the 30 nm thick SnO thin films strongly dependent on the thicknesses of the fully oxidized insulating SnO buffer layer. When the buffer layer thickness increased from 100 nm to 700 nm, the electron mobility of values increased from 23 cm2 V−1 s−1 to 106 cm2 V−1 s−1 and the carrier density increased from 9 × 1017 cm−3 to 3 × 1018 cm−3, which we attribute to reduction of large density of dislocations as the buffer layer thickness increases. In addition, we studied the doping dependence of the electron mobility of SnO thin films grown on top of 500 nm thick insulating SnO buffer layers. The oxygen vacancy doping level was controlled by the oxygen pressure during deposition. As the oxygen pressure increased to 47.5 mTorr, the carrier density was found to decrease to 9.1 × 1016 cm−3 and the electron mobility values to 13 cm2 V−1 s−1, which is consistent with the dislocation limited transport properties. We also checked the conductance change of the SnO during thermal annealing cycles, demonstrating unusual stability of its oxygen. The correlation between the electronic transport properties and microstructural defects investigated by the transmission electron microscopy was drawn. The excellent oxygen stability and high electron mobility of low carrier density SnO films demonstrate its potential as a transparent oxide semiconductor.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd