Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/8/10.1063/1.4921093
1.
1.B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
http://dx.doi.org/10.1126/science.1133734
2.
2.L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045302
3.
3.X. L. Qi and S. C. Zhang, Phys. Today 63(1), 33 (2010).
http://dx.doi.org/10.1063/1.3293411
4.
4.J. E. Moore, Nature 464, 194 (2010).
http://dx.doi.org/10.1038/nature08916
5.
5.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
6.
6.X. L. Qi, R. Li, J. Zang, and S. C. Zhang, Science 323, 1184 (2009).
http://dx.doi.org/10.1126/science.1167747
7.
7.W.-K. Tse and A. H. MacDonald, Phys. Rev. Lett. 105, 057401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.057401
8.
8.R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010).
http://dx.doi.org/10.1126/science.1187485
9.
9.Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S. Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195203
10.
10.J. S. Dyck, C. Drasar, P. Lost’ak, and C. Uher, Phys. Rev. B 71, 115214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115214
11.
11.Z. Zhou, Y. J. Chien, and C. Uher, Phys. Rev. B 74, 224418 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.224418
12.
12.J. S. Dyck, P. Hajek, P. Losit’ak, and C. Uher, Phys. Rev. B 65, 115212 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115212
13.
13.P. P. J. Haazen, J. B. Laloe, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera, Appl. Phys. Lett. 100, 082404 (2012).
http://dx.doi.org/10.1063/1.3688043
14.
14.C. Z. Chang, J. S. Zhang, X. Feng, J. Shen, Z. C. Zhang, M. H. Guo, K. Li, Y. B. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. H. Ji, X. Chen, J. F. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013).
http://dx.doi.org/10.1126/science.1234414
15.
15.S. Oh, Science 340, 153 (2013).
http://dx.doi.org/10.1126/science.1237215
16.
16.J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys. 10, 731 (2014).
http://dx.doi.org/10.1038/nphys3053
17.
17.X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q. Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee, W.-L. Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.137201
18.
18.C. Z. Chang, W. Zhao, D. Kim, H. Zhang, B. Assaf, D. Heiman, S.-C. Zhang, C. Liu, M. Chan, and J. Moodera, Nat. Mater. 14, 473 (2015).
http://dx.doi.org/10.1038/nmat4204
19.
19.K. Lai, W. Kundhikanjana, M. A. Kelly, Z.-X. Shen, J. Shabani, and M. Shayegan, Phys. Rev. Lett. 107, 176809 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.176809
20.
20.K. C. Nowack, E. M. Spanton, M. Baenninger, M. König, J. R. Kirtley, B. Kalisky, C. Ames, P. Leubner, C. Brüne, H. Buhmann, L. W. Molenkamp, D. Goldhaber-Gordon, and K. A. Moler, Nat. Mater. 12, 787 (2013).
http://dx.doi.org/10.1038/nmat3682
21.
21.E. M. Spanton, K. C. Nowack, L. Du, G. Sullivan, R.-R. Du, and K. A. Moler, Phys. Rev. Lett. 113, 026804 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.026804
22.
22.C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
http://dx.doi.org/10.1103/RevModPhys.21.541
23.
23.Y. Geng, N. Lee, Y. J. Choi, S.-W. Cheong, and W. Wu, Nano Lett. 12, 6055 (2012).
http://dx.doi.org/10.1021/nl301432z
24.
24.D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and T. Yogi, J. Appl. Phys. 68, 1169 (1990).
http://dx.doi.org/10.1063/1.346713
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4921093 for step heights of cleaved surface, estimation of domain wall width, and complete MFM data sets.[Supplementary Material]
26.
26.H. Li, Y. R. Song, M. Y. Yao, F. Yang, L. Mao, F. F. Zhu, C. H. Liu, C. L. Gao, D. Qian, X. Yao, J. F. Jia, Y. J. Shi, and D. Wu, Appl. Phys. Lett. 101, 072406 (2012).
http://dx.doi.org/10.1063/1.4746404
27.
27.F. Yang, Y. R. Song, H. Li, K. F. Zhang, X. Yao, C. Liu, D. Qian, C. L. Gao, and J.-F. Jia, Phys. Rev. Lett. 111, 176802 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.176802
28.
28.J. J. Saenz, N. Garcia, P. Grutter, E. Meyer, H. Heinzelmann, R. Wiesendanger, L. Rosenthaler, H. R. Hidber, and H. J. Gunterodt, J. Appl. Phys. 62, 4293 (1987).
http://dx.doi.org/10.1063/1.339105
29.
29.Y. Geng, J. H. Lee, D. G. Schlom, J. W. Freeland, and W. Wu, Phys. Rev. B 87, 121109 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.121109
30.
30.S. Park, Y. Horibe, Y. J. Choi, C. L. Zhang, S. W. Cheong, and W. D. Wu, Phys. Rev. B 79, 180401 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.180401
31.
31.A. Wadas and H. J. Hug, J. Appl. Phys. 72, 203 (1992).
http://dx.doi.org/10.1063/1.352159
32.
32.L. Klein, J. S. Dodge, C. H. Ahn, G. J. Snyder, T. H. Geballe, M. R. Beasley, and A. Kapitulnik, Phys. Rev. Lett. 77, 2774 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2774
33.
33.F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R2037
34.
34.E. Morosan, H. W. Zandbergen, L. Li, M. Lee, J. G. Checkelsky, M. Heinrich, T. Siegrist, N. P. Ong, and R. J. Cava, Phys. Rev. B 75, 104401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104401
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/8/10.1063/1.4921093
Loading
/content/aip/journal/aplmater/3/8/10.1063/1.4921093
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/8/10.1063/1.4921093
2015-05-13
2016-10-01

Abstract

We report a systematic study of ferromagnetic domains in both single-crystal and thin-film specimens of magnetic topological insulators Cr doped (BiSb)Te using magnetic force microscopy(MFM). The temperature and field dependences of MFM and resistance data are consistent with previous bulk transport and magnetic characterization. Bubble-like ferromagnetic domains were observed in both single crystals and thin films. Significantly, smaller domain size (∼500 nm) with narrower domain wall (∼150 − 300 nm) was observed in thin films of magnetic topological insulators, likely due to vertical confinement effect. These results suggest that thin films are more promising for visualization of chiral edge states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/8/1.4921093.html;jsessionid=qD1BBlTpyePlTBP8nA6Zg0Tz.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/8/10.1063/1.4921093&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/8/10.1063/1.4921093&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/8/10.1063/1.4921093'
Top,Right1,Right2,Right3,