Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/8/10.1063/1.4922857
1.
1.D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Di, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146401
2.
2.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
3.
3.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
4.
4.J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121306
5.
5.Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 82, 241306(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.241306
6.
6.S. Jia, H. Ji, E. Climent-Pascual, M. K. Fuccillo, M. E. Charles, J. Xiong, N. P. Ong, and R. J. Cava, Phys. Rev. B 84, 235206 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235206
7.
7.Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 84, 165311 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165311
8.
8.J. Huiwen, J. M. Allred, M. K. Fuccillo, M. E. Charles, M. Neupane, L. A. Wray, M. Z. Hasan, and R. J. Cava, Phys. Rev. B 85, 201103(R) (2012).
http://dx.doi.org/10.1103/physrevb.85.201103
9.
9.N. Fuschillo, J. N. Bierly, and F. J. Donahoe, J. Phys. Chem. Solids 8, 430 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90382-8
10.
10.I. Teramoto and S. Takayanagi, J. Phys. Chem. Solids 19, 124 (1961).
http://dx.doi.org/10.1016/0022-3697(61)90065-8
11.
11.J. Horak, P. Lostak, L. Koudelka, and R. Novotni, Solid State Commun. 55, 1031 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90583-6
12.
12.B. Philips-Invernizzi, D. Dupont, and C. Caze, Opt. Eng. 40, 1082 (2001).
http://dx.doi.org/10.1117/1.1370387
13.
13.R. K. Harris, E. D. Becker, S. M. C. De Menezes, R. Goodfellow, and P. Granger, Pure Appl. Chem. 73, 17951818 (2001).
http://dx.doi.org/10.1351/pac200173111795
14.
14.D. Koumoulis, T. C. Chasapis, B. Leung, R. E. Taylor, D. King, Jr., M. G. Kanatzidis, and L. S. Bouchard, Adv. Funct. Mater. 24, 15191528 (2014).
http://dx.doi.org/10.1002/adfm.201302673
15.
15.D. L. Greenaway and J. Harbeke, Phys. Chem. Solids 26, 1585 (1965).
http://dx.doi.org/10.1016/0022-3697(65)90092-2
16.
16.H. K. Köhler, W. Haigis, and A. von Minddendorf, Phys. Status Solidi B 78, 637 (1976).
http://dx.doi.org/10.1002/pssb.2220780223
17.
17.I. G. Austin and A. J. Sheard, J. Electron. Control 3, 236 (1957).
http://dx.doi.org/10.1080/00207215708937085
18.
18.Z. M. Gibbs, A. LaLonde, and G. J. Snyder, New J. Phys. 15, 075020 (2013).
http://dx.doi.org/10.1088/1367-2630/15/7/075020
19.
19.J. R. Drabble and C. H. L. Goodman, J. Phys. Chem. Solids 5, 142 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90139-2
20.
20.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
21.
21.B. M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific, Singapore, 1994).
22.
22.J. Navratil, J. Horák, T. Plechácek, S. Kamba, P. Lośt’ák, J. S. Dyck, W. Chen, and C. Uher, J. Solid State Chem. 177, 1704 (2004).
http://dx.doi.org/10.1016/j.jssc.2003.12.031
23.
23.Z. M. Gibbs, H.-S. Kim, H. Wang, and G. J. Snyder, Appl. Phys. Lett. 106, 022112 (2015).
http://dx.doi.org/10.1063/1.4905922
24.
24.G. N. Gordiakova, G. V. Kokosh, and S. S. Sinani, Sov. Phys.-Tech. Phys. 3, 1 (1958).
25.
25.S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, and X. Tang, J. Mater. Chem. 22, 20943 (2012).
http://dx.doi.org/10.1039/c2jm34608g
26.
26.A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W. X. Gao, K. Takase, Y. Giman, P. Lostak, and J. Horak, Phys. Rev. B 50, 16921 (1995).
http://dx.doi.org/10.1103/PhysRevB.50.16921
27.
27.Yi-B. Gao, B. He, D. Parker, I. Androulakis, and J. P. Heremans, Phys. Rev. B 90, 125204 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125204
28.
28.D. O. Scanlon, P. D. King, R. P. Singh, A. de la Torre, S. M. Walker, G. Balakrishnan, F. Baumberger, and C. R. Catlow, Adv. Mater. 24, 1254 (2012).
http://dx.doi.org/10.1002/adma.201200187
29.
29.A. Akrap, A. Ubaldini, E. Giannini, and L. Forró, EPL 107, 57008 (2014).
http://dx.doi.org/10.1209/0295-5075/107/57008
30.
30.M. K. Fuccillo, J. A. Shuang, M. E. Charles, and R. J. Cava, J. Electron. Mater. 42, 1246 (2013).
http://dx.doi.org/10.1007/s11664-013-2577-0
31.
31.M. H. LaChance and E. E. Gardner, Adv. Energy Convers. 1, 133 (1961).
http://dx.doi.org/10.1016/0365-1789(61)90021-2
32.
32.R. Kohlrausch, Ann. Phys. Chem. 91, 179213 (1854).
http://dx.doi.org/10.1002/andp.18541670203
33.
33.D. C. Johnston, Phys. Rev. B 74, 184430 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.184430
34.
34.C. S. Lue, Y. F. Tao, K. M. Sivakumar, and Y. K. Kuo, J. Phys.:Condens. Matter 19, 406230 (2007).
http://dx.doi.org/10.1088/0953-8984/19/40/406230
35.
35.N. Bloembergen, Physica 20, 1130 (1954).
http://dx.doi.org/10.1016/s0031-8914(54)80253-9
36.
36.D. Wolf, Spin Temperature and Nuclear-Spin Relaxation in Matter (Oxford, Clarendon, 1979).
37.
37.H. Selbach, O. Kanert, and D. Wolf, Phys. Rev. B 19, 4435 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.4435
38.
38.D. Koumoulis, R. E. Taylor, D. King, Jr., and L.-S. Bouchard, Phys. Rev. B 90, 125201 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125201
39.
39.R. E. Taylor, F. Alkan, D. Koumoulis, M. P. Lake, D. King, Jr., C. Dybowski, and L.-S. Bouchard, J. Phys. Chem. C 117, 8959 (2013).
http://dx.doi.org/10.1021/jp3101877
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/8/10.1063/1.4922857
Loading
/content/aip/journal/aplmater/3/8/10.1063/1.4922857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/8/10.1063/1.4922857
2015-06-23
2016-09-29

Abstract

The requirement for large bulk resistivity in topological insulators has led to the design of complex ternary and quaternary phases with balanced donor and acceptor levels. A common feature of the optimized phases is that they lie close to the - to -transition. The tetradymite BiTeSe system exhibits minimum bulk conductance at the ordered composition BiTeSe. By combining local and integral measurements of the density of states, we find that the point of minimum electrical conductivity at = 1.0 where carriers change from hole-like to electron-like is characterized by conductivity of the mixed type. Our experimental findings, which are interpreted within the framework of a two-band model for the different carrier types, indicate that the mixed state originates from different types of native defects that strongly compensate at the crossover point.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/8/1.4922857.html;jsessionid=Zq2qhnFXtLPgljbzUfj_4fqW.x-aip-live-06?itemId=/content/aip/journal/aplmater/3/8/10.1063/1.4922857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/8/10.1063/1.4922857&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/8/10.1063/1.4922857'
Top,Right1,Right2,Right3,