Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/3/8/10.1063/1.4926545
1.
1.T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (ASM International, 1990), p. 1485.
2.
2.A. Zaitsev, N. Korolyov, and B. Mogutnov, J. Chem. Thermodyn. 23, 11 (1991).
http://dx.doi.org/10.1016/S0021-9614(05)80053-9
3.
3.L. L. Pytlewski and E. R. Nixon, Inorg. Chem. 2, 763 (1963).
http://dx.doi.org/10.1021/ic50008a023
4.
4.W. Dahlmann and H. Schnering, Naturwissenschaften 60, 518 (1973).
http://dx.doi.org/10.1007/BF00603256
5.
5.H. Franck and H. Fuldner, Z. Anorg. Allg. Chem. 204, 97 (1932).
http://dx.doi.org/10.1002/zaac.19322040112
6.
6.C. Hadenfeldt and F. Bartels, Z. Anorg. Allg. Chem. 620, 1247 (1994).
http://dx.doi.org/10.1002/zaac.19946200719
7.
7.S. Moran, EPPO Bull. 18, 489 (1988).
http://dx.doi.org/10.1111/j.1365-2338.1988.tb00404.x
8.
8.H. Faber and M. Dana, “The history and development of military pryrotechnics. -v. 2. The manufacture of military pyrotechnics. -v. 3. A study of the chemicals used in the manufacture of military pyrotechnics,” in Military Pyrotechnics (U.S. Government Printing Office, 1919).
9.
9.R. Ripley, J. Less-Common Met. 4, 496 (1962).
http://dx.doi.org/10.1016/0022-5088(62)90037-1
10.
10.A. Mokhtari, J. Phys.: Condens. Matter 20, 135224 (2008).
http://dx.doi.org/10.1088/0953-8984/20/13/135224
11.
11.C. Hilsum and A. C. Rose-Innes, in Semiconducting III–V Compounds (Pergamon Press, 1961), Vol. 1.
12.
12.X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).
http://dx.doi.org/10.1038/35051047
13.
13.P. Dean and D. Thomas, Phys. Rev. 150, 690 (1966).
http://dx.doi.org/10.1103/PhysRev.150.690
14.
14.D. Thomas and J. Hopfield, Phys. Rev. 150, 680 (1966).
http://dx.doi.org/10.1103/PhysRev.150.680
15.
15.G. Haacke and G. Castellion, J. Appl. Phys. 35, 2484 (1964).
http://dx.doi.org/10.1063/1.1702886
16.
16.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
http://dx.doi.org/10.1038/35065039
17.
17.K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
18.
18.C.-K. Chiu and A. P. Schnyder, Phys. Rev. B 90, 205136 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.205136
19.
19.A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
20.
20.H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
http://dx.doi.org/10.1107/S0021889869006558
21.
21.J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90108-I
22.
22.P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties, Technische Universität Wien, Austria, 2001.
23.
23.D. J. Singh and L. Nordström, Planewaves, Pseudopotentials, and the LAPW Method, 2nd ed. (Springer, New York, 2006).
24.
24.G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B 64, 195134 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195134
25.
25.E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun. 114, 15 (2000).
http://dx.doi.org/10.1016/S0038-1098(99)00577-3
26.
26.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27.O. Jepsen and O. Andersen, TB-LMTO, version 47, Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany, 2000.
28.
28.R. Dronskowski and P. E. Bloechl, J. Phys. Chem. 97, 8617 (1993).
http://dx.doi.org/10.1021/j100135a014
29.
29.A. Huetz and G. Nagorsen, Z. Metallkd. 66, 314 (1975).
30.
30.ICSD, deposition number CSD-429048 and CSD-429049, 2015.
31.
31.J. D. Corbett, E. Garcia, A. M. Guloy, W.-M. Hurng, Y.-U. Kwon, and E. A. Leon-Escamilla, Chem. Mater. 10, 2824 (1998).
http://dx.doi.org/10.1021/cm980223c
32.
32.E. A. Leon-Escamilla and J. D. Corbett, Chem. Mater. 18, 4782 (2006).
http://dx.doi.org/10.1021/cm0612191
33.
33.T. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. Hor, J. Allred, A. Williams, D. Qu et al., Phys. Rev. B 79, 014522 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014522
34.
34.Q. D. Gibson, L. M. Schoop, L. Muechler, L. S. Xie, M. Hirschberger, N. P. Ong, R. Car, and R. J. Cava, Phys. Rev. B 91, 205128 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.205128
35.
35.S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.140405
36.
36.Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195320
37.
37.Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.125427
38.
38.S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.027603
39.
39.M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Nat. Commun. 5, 3786 (2014).
http://dx.doi.org/10.1038/ncomms4786
40.
40.Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).
http://dx.doi.org/10.1126/science.1245085
41.
41.C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146802
42.
42.M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, Inorg. Chem. 53, 4062 (2014).
http://dx.doi.org/10.1021/ic403163d
43.
43.Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. Mo, H. Peng, P. Dudin et al., Nat. Mater. 13, 677681 (2014).
http://dx.doi.org/10.1038/nmat3990
44.
44.T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong, Nat. Mater. 14, 280284 (2015).
http://dx.doi.org/10.1038/nmat4143
45.
45.S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Nat. Mater. 13, 851856 (2014).
http://dx.doi.org/10.1038/nmat4023
46.
46.M. Phillips and V. Aji, Phys. Rev. B 90, 115111 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115111
47.
47.H. Weng, Y. Liang, Q. Xu, Y. Rui, Z. Fang, X. Dai, and Y. Kawazoe, preprint arXiv:1411.2175 (2014).
48.
48.Y. Chen, Y.-M. Lu, and H.-Y. Kee, Nat. Commun. 6, 6593 (2015).
http://dx.doi.org/10.1038/ncomms7593
49.
49.Y. Kim, B. J. Wieder, C. Kane, and A. M. Rappe, preprint arXiv:1504.03807 (2015).
50.
50.R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, preprint arXiv:1504.04577 (2015).
51.
51.G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T. Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C. Lee, H.-T. Jeng, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, preprint arXiv:1505.03069 (2015).
52.
52.M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. Cava, Phys. Rev. B 89, 020505 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.020505
53.
53.Q. Gibson, D. Evtushinsky, A. Yaresko, V. Zabolotnyy, M. N. Ali, M. Fuccillo, J. Van den Brink, B. Büchner, R. Cava, and S. Borisenko, Sci. Rep. 4, 5168 (2014).
http://dx.doi.org/10.1038/srep05168
54.
54.K. Arpino, D. Wallace, Y. Nie, T. Birol, P. King, S. Chatterjee, M. Uchida, S. Koohpayeh, J.-J. Wen, K. Page, C. Fennie, K. Shen, and T. McQueen, Phys. Rev. Lett. 112, 017002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.017002
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/3/8/10.1063/1.4926545
Loading
/content/aip/journal/aplmater/3/8/10.1063/1.4926545
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/3/8/10.1063/1.4926545
2015-07-09
2016-09-25

Abstract

We report the synthesis and crystal structure of a new high-temperature form of CaP. The crystal structure was determined through Rietveld refinements of synchrotron powder x-ray diffraction data. This form of CaP has a crystal structure of the hexagonal MnSi type, with a Ca ion deficiency compared to the ideal 5:3 stoichiometry. This yields a stable, charge-balanced compound of Ca2+ and P3−. We also report the observation of a secondary hydride phase, CaPH, which again is a charge-balanced compound. The calculated band structure of CaP indicates that it is a three-dimensional Dirac semimetal with a highly unusual ring of Dirac nodes at the Fermi level. The Dirac states are protected against gap opening by a mirror plane in a manner analogous to what is seen for graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/3/8/1.4926545.html;jsessionid=RpD_trxQpC1u0g3f0rfpX6pc.x-aip-live-02?itemId=/content/aip/journal/aplmater/3/8/10.1063/1.4926545&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/3/8/10.1063/1.4926545&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/3/8/10.1063/1.4926545'
Top,Right1,Right2,Right3,